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Introduction

These course notes are adapted from the original course notes written by Prof. Sizwe Mabizela when
he last gave this course in 2006 to whom I am indebted. I thus make no claims of originality but have made
several changes throughout. In particular, I have attempted to motivate these results in terms of applications
in science and in other important branches of mathematics.

Functional analysis is the branch of mathematics, specifically of analysis, concerned with the study of
vector spaces and operators acting on them. It is essentially where linear algebra meets analysis. That is,
an important part of functional analysis is the study of vector spaces endowed with topological structure.
Functional analysis arose in the study of tansformations of functions, such as the Fourier transform, and in
the study of differential and integral equations. The founding and early development of functional analysis
is largely due to a group of Polish mathematicians around Stefan Banach in the first half of the 20th century
but continues to be an area of intensive research to this day. Functional analysis has its main applications in
differential equations, probability theory, quantum mechanics and measure theory amongst other areas and
can best be viewed as a powerful collection of tools that have far reaching consequences.

As a prerequisite for this course, the reader must be familiar with linear algebra up to the level of a
standard second year university course and be familiar with real analysis. The aim of this course is to
introduce the student to the key ideas of functional analysis. It should be remembered however that we
only scratch the surface of this vast area in this course. We examine normed linear spaces, Hilbert spaces,
bounded linear operators, dual spaces and the most famous and important results in functional analysis
such as the Hahn-Banach theorem, Baires category theorem, the uniform boundedness principle, the open
mapping theorem and the closed graph theorem. We attempt to give justifications and motivations for the
ideas developed as we go along.

Throughout the notes, you will notice that there are exercises and it is up to the student to work through
these. In certain cases, there are statements made without justification and once again it is up to the student
to rigourously verify these results. For further reading on these topics the reader is referred to the following
texts:

e G. BACHMAN, L. NARICI, Functional Analysis, Academic Press, N.Y. 1966.

E. KREYSZIG, Introductory Functional Analysis, John Wiley & sons, New York-Chichester-Brisbane-
Toronto, 1978.

o G. F. SIMMONS, Introduction to topology and modern analysis, McGraw-Hill Book Company, Sin-
gapore, 1963.

e A. E. TAYLOR, Introduction to Functional Analysis, John Wiley & Sons, N. Y. 1958.

I have also found Wikipedia to be quite useful as a general reference.



Chapter 1

Linear Spaces

1.1 Introducton

In this first chapter we review the important notions associated with vector spaces. We also state and prove
some well known inequalities that will have important consequences in the following chapter.

Unless otherwise stated, we shall denote by R the field of real numbers and by C the field of complex
numbers. Let F denote either R or C.

1.1.1 Definition
A linear space over a field F is a nonempty set X with two operations

+ : X xX —> X (called addition), and
Fx X — X (called multiplication)

satistying the following properties:
[1] x + y € X wheneverx,y € X;
2] x+y=y+xforallx,y e X;
[3] There exists a unique element in X, denoted by 0, such that x + 0 =0+ x = x forall x € X;

[4] Associated with each x € X is a unique element in X, denoted by —x, such that x + (—x) =
—x+x=0;

[5] x+y)+z=x+(+z) foralx,y,zeX;

[6] -x € X forall x € X and foralla € TF;

[7la-(x+y)=oa-x+a-yforallx,y € X andalla € F;

[8] @+ B)-x=a-x+pB-xforallx € X andalla, € F;

[9] (@B) - x=a-(B-x)forallx € X andalla, B € F;
[10] 1-x =x forallx € X.

We emphasize that a linear space is a quadruple (X, F, 4, -) where X is the underlying set, IF a field, +

addition, and - multiplication. When no confusion can arise we shall identify the linear space (X, F, 4, )
with the underlying set X. To show that X is a linear space, it suffices to show that it is closed under

addition and scalar multiplication operations. Once this has been shown, it is easy to show that all the other
axioms hold.
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1.1.2 Definition
A real (resp. complex) linear space is a linear space over the real (resp. complex) field.

A linear space is also called a vector space and its elements are called vectors.

1.1.3 Examples

[1]

[2]

[3]

[4]

[5]

For a fixed positive integer n, let X = F* = {x = (x1, x2, ..., xp) : x; € F,i =
1, 2,...,n} — the set of all n-tuples of real or complex numbers. Define the operations
of addition and scalar multiplication pointwise as follows: For all x = (x1, x2, ..., Xn),
y=W1, y2, ..., yppinF*and x € F,
x+y = (xX14+y1, X2+ Y2, oooy Xn+ Vn)
a-x = (axy, axa, ..., aXpy).

Then F” is a linear space over F.

Let X =Cla,b] = {x :[a,b] = F | x is continuous }. Define the operations of addition and
scalar multiplication pointwise: For all x, y € X and all ¢ € R, define

(x+y)(@) =x@) +y@) and
(¢-x)1t) =ax(@)

Then Cla, b] is a real vector space.

} forall ¢ € [a, b].

Sequence Spaces: Informally, a sequence in X is a list of numbers indexed by N. Equivalently,
a sequence in X is a function x : N — X given by n — x(n) = x,. We shall denote a
sequence xi, xz, ... by

x = (x1, x2, ..) = (xx)°.

The sequence space s. Let s denote the set of all sequences x = (x,){° of real or complex
numbers. Define the operations of addition and scalar multiplication pointwise: For all x =
(x1, x2, ...), vy =1, y2, ...) esand all @ € IF, define

xX+y = (x1+y1, x2+y2, ...)
a-x = (axg, axa, ...).

Then s is a linear space over F.

The sequence space {.. Let £, = £ (N) denote the set of all bounded sequences of real or
complex numbers. That is, all sequences x = (x,){° such that

sup |x;| < oo.
ieN

Define the operations of addition and scalar multiplication pointwise as in example (3). Then
{~ is a linear space over F.

The sequence space {, = {,(N), 1 < p < oo. Let £, denote the set of all sequences
x = (x,){° of real or complex numbers satisfying the condition

o0
> Ixil? < oo
i=1
Define the operations of addition and scalar multiplication pointwise: For all x = (x,), y =

(yn) in £, and all « € IF, define

xX+y = (x1+y1, x2+y2, ...)
a-x = (axg, axa, ...).
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[6]

[7]

[8]

Then ¢, is a linear space over F.

Proof. Let x = (x1, X2, ...), ¥y = (»1, y2. ...) € {,. We must show that x + y € £,. Since,
foreachi € N,

IXi + yil? < [2max{|x;, [yil}]” = 27 max{|x;[?, [yil"} < 2P (|Ixil? + |l P) .

it follows that
o0 o0 o0
> i+ pil? <27 (Z xil? + ) |y,-|1’) < oo,
i=1 i=1 i=1

Thus, x + y € £,. Also, if x = (x,) € £, and o € I, then

o0 o0
S lexil? = Jal? 3 [xil? < oo
i=1 i=1

Thatis, a-x € £,.

The sequence space ¢ = ¢(N). Let ¢ denote the set of all convergent sequences x = (x,){° of
real or complex numbers. That is, ¢ is the set of all sequences x = (x,){° such that lim x,
n—>00

exists. Define the operations of addition and scalar multiplication pointwise as in example
(3). Then cis a linear space over F.

The sequence space ¢y = ¢o(N). Let ¢o denote the set of all sequences x = (x,){° of real

or complex numbers which converge to zero. That is, ¢y is the space of all sequences

x = (x,){° such that lim x, = 0. Define the operations of addition and scalar multiplication
n—>00

pointwise as in example (3). Then ¢y is a linear space over F.

The sequence space ¢, = £, (N). Let £, denote the set of all sequences x = (x,){° of real or
complex humbers such that x; = 0 for all but finitely many indices i. Define the operations
of addition and scalar multiplication pointwise as in example (3). Then ¢, is a linear space
over FF.
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1.2 Subsets of a linear space

Let X be a linear space over F, x € X and 4 and B subsets of X and A € F. We shall denote by

x+A = {x+a:ae A}
A+B = {a+b:ac A, be B},
Ad = {Aa:a € A}

1.3 Subspaces and Convex Sets

Definition
A subset M of a linear space X is called alinear subspace of X if

@ x+yeMforallx,y € M, and
(b) Ax € M forallx € M and forall A € F.

Clearly, a subset M of a linear space X is a linear subspace if andonly if M + M C M and AM C M
forall A € F.

Examples
[1] Every linear space X has at least two distinguished subspaces: M = {0} and M = X.
These are called the improper subspaces of X. All other subspaces of X are called the
proper subspaces.
[2] Let X = R2. Then the nontrivial linear subspaces of X are straight lines through the origin.
[B] M ={x=(0, x2, x3,...,%x,) :x; € R,i =2,3,...,n}is a subspace of R".
[4] M ={x:[-1,1] - R, x continuous and x(0) = 0} is a subspace of C[-1, 1].
[5] M = {x:[-1,1] = R, x continuous and x(0) = 1 } is not a subspace of C[-1, 1].
[6] Show that ¢, is a subspace of c.
Definition

Let K be a subset of a linear space X. The linear hull of K, denoted by lin(K) or span(K), is the
intersection of all linear subspaces of X that contain K.

The linear hull of K is also called the linear subspace of X spanned (or generated) by K.

It is easy to check that the intersection of a collection of linear subspaces of X is a linear subspace of
X . It therefore follows that the linear hull of a subset K of a linear space X is again a linear subspace of X.
In fact, the linear hull of a subset K of a linear space X is the smallest linear subspace of X which contains
K.

Proposition
Let K be a subset of a linear space X . Then the linear hull of K is the set of all finite linear combinations
of elements of K. That is,

n
IIH(K)Z ijxj |)C1, X2y vy anK, )\1, )\2, ey )\nEF, neN
j=1
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Proof. Exercise. |

1.3.5 Definition
[1] A subset{xi, X2, ..., Xn} of alinear space X is said to be linearly independent if the equation

o1X1+arxy 4+ -+ opxy, =0

only has the trivial solution; = oy = -+ = oy = 0. Otherwise, the set {x1, X2, ..., Xp} IS
linearly dependent.

[2] A subset K ofa linear space X is said to be linearly independent if every finite subset{x1, X2, ..., Xn}
of K is linearly independent.

1.3.6 Definition

If{xy, x2, ..., X} is a linearly independent subset of X and

X = lin{xy, X3, ..., Xn}, then X is said to have dimension . In this case we say that {x{, X2, ..., Xn}
is a basis for the linear space X . If a linear space X does not have a finite basis, we say that it is infinite-
dimensional.

1.3.7 Examples
[1] The space R” has dimension n. Its standard basis is {e1, e2, ..., ex}, Where, for each
j =12, ..., n, e is an n-tuple of real numbers with 1 in the j-th position and zeroes
elsewhere; i.e.,

e; =(0,0,...,1,0, ..., 0), where 1 occurs in the j-th position.
[2] The space P, of polynomials of degree at most n has dimension n + 1. lts standard basis is
{1, ¢, t2, ..., "}
[3] The function space Cla, b] is infinite-dimensional.
[4] The spaces {,, with 1 < p < oo, are infinite-dimensional.

1.3.8 Definition
Let K be a subset of a linear space X . We say that

(a) K isconvex if Ax + (1 —A)y € K whenever x, y € K and A € [0, 1];
(b) K isbalanced ifA\x € K whenever x € K and |A| < 1;

(c¢) K is absolutely convex if K is convex and balanced.

1.3.9 Remark
[1] Itis easy to verify that K is absolutely convex if and only if Ax + uy € K whenever x,y € K
and |A| + |u| < L.

[2] Every linear subspace is absolutely convex.

1.3.10 Definition
Let S be a subset of the linear space X. The convex hull of S, denoted co(S), is the intersection
of all convex sets in X which contain S.

Since the intersection of convex sets is convex, it follows that co(S) is the smallest convex set which
contains S. The following result is an alternate characterization of co(S).
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Proposition
Let S be a nonempty subset of a linear space X. Then co(S) is the set of all convex combinations of
elements of S. That is,

n n
co(S) = ijxj X1, x2, ..., xp €8, A; 20V j=1,2,...,n, ij =1,neN
Proof. Let C denote the set of all convex combinations of elements of S. That is,

n n
ijxj |X1, X2, ..., Xp €S, )»jEOVjZI,Z, ., N, ZAJI:I’ neN
; =

n m n
Let x,y € Cand 0 < A < 1. Then x = Zkixi, y:Zuiy,-, where A;, u; > 0, ZA;: 1,
1 1 1

m
Z“i =1, and x;, y; € S. Thus
1

n m
Ax+ 1=y =Y Mixi + Yy (1= i
1 1
is a linear combination of elements of S, with nonnegative coefficients, such that
n m n m
DM+ Y =M =AY M+ A=Y mi=r+1-2) =1
1 1 1 1

That is, Ax + (1 — 1)y € C and C is convex. Clearly S C C. Hence co(S) C C.

We now prove the inclusion C C co(S). Note that, by definition, S C co(S). Let x;, x, € S,
A1 >0, Ap > 0and A; + A, = 1. Then, by convexity of co(S), A;x; + Axxz € co(S). Assume that

n—1 n—1
Zkixi € co(S) whenever X1, x2, ..., X4—1 €S, A; >0, =1,2,..., n—1and ij = 1. Let
1 j=1
n
X1, X2, ..., Xp € Sand Ay, Az, ..., Agbesuchthath; > 0,/ =1,2, ..., nand Y A; = L. If
j=1
n—1 n—1
ZA] = 0, then A, = 1. Hence ZA Xj = AuXp € CO(S). Assume that 8 = ZA > 0. Then j >0
Jj=1 j=1
) n— 1)\'
forallj =1, 2, ..., n—1and Z F] = 1. By the induction assumption, Z FJXj € co(S). Hence
, =

D ohxj=p Z_jg] + Anxn € CO(S).
Jj=1 =1

Thus C C co(S). |

1.4 Quotient Space

Let M be alinear subspace of a linear space X over F. For all x, y € X, define

x=ymod M) < x—-yeM.
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It is easy to verify that = defines an equivalence relation on X .
For x € X, denote by

Xl'={yeX:x=ymod M)} ={yeX: x—yeM}=x+ M,
the coset of x with respect to M. The quotient space X /M consists of all the equivalence classes [x],
x € X. The quotient space is also called a factor space.
Proposition
Let M be a linear subspace of a linear space X over F. For x, y € X and A € F, define the operations
]+l =[x+y] and A -[x] =[A-x].
Then X/ M is a linear space with respect to these operations.
Proof. Exercise. ]

Note that the linear operations on X/ M are equivalently given by: For all x, y € X and A € F,

x+M)+(y+M)y=x+y+Mandri(x+ M) =Aix+ M.

Definition
Let M be a linear subspace of a linear space X over F. The codimension of M in X is defined as the
dimension of the quotient space X /M . It is denoted by codim(M ') = dim(X/M).

Clearly, if X = M, then X/M = {0} and so codim(X) = 0.

1.5 Direct Sums and Projections

Definition
Let M and N be linear subspaces of a linear space X over F. We say that X is a direct sum of M and N
if

X=M+N and M NN = {0}.

If X is a direct sum of M and N, we write X = M @& N. In this case, we say that M (resp. N ) is an
algebraic complement of N (resp. M ).

Proposition
Let M and N be linear subspaces of a linear space X over F. If X = M @& N, then each x € X has a
unique representation of the form x = m + n forsomem € M andn € N.

Proof. Exercise. |

Let M and N be linear subspaces of a linear space X over [F such that X = M & N. Then
codim(M) =dim(N). Also, since X = M & N, dim(X) =dim(M )+dim(N). Hence

dim(X) = dim(M) 4+ codim(M).
It follows that if dim(X) < oo, then codim(M ) =dim(X)—dim(M ).

The operator P : X — X is called an algebraic projection if P islinear (i.e., P(¢x+y) = aPx+ Py
forall x,y € X and @ € [F) and P2="P e, Pis idempotent.
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Proposition

Let M and N be linear subspaces of a linear space X over F such that X = M & N. Define P : X — X
by P(x) = m, where x = m + n, withm € M andn € N. Then P is an algebraic projection of X onto
M along N. Moreover M = P(X)and N = (I — P)(X) = ker(P).

Conversely, if P : X — X is an algebraic projection, then X = M & N, where M = P(X) and
N = (I — P)(X) = ker(P).

Proof. Linearity of P: Let x = m + n; and y = m, + ny, where my,m, € M and ny,n, € N. For
o el
P(ax + y) = P((amy +my) + (any + ny)) = amy; +my; =aPx + Py.

Idempotency of P: Since m = m + 0, withm € M and 0 € N, we have that Pm = m and hence
P2x = Pm = m = Px. Thatis, P? = P.

Finally,n = x —m = (I — P)x. Hence N = (I — P)(X). Also, Px = Oifandonly if x € N, i.e,
ker(P) = N.

Conversely, let x € X and set m = Px andn = (I — P)x. Then x = m + n, where m € M and
n € N. We show that this representation is unique. Indeed, if x = m; 4+ n; where m; € M andn; € N,
then my = Pu and n; = (I — P)v for some u,v € X. Since P? = P, it follows that Pm; = m; and
Pn; =0.Hencem = Px = Pm; + Pny = Pmy = my. Similarly n = nj. [l

1.6 The Holder and Minkowski Inequalities

We now turn our attention to three important inequalities. The first two are required mainly to prove the
third which is required for our discussion about normed linear spaces in the subsequent chapter.

Definition 11
Let p and g be positive real numbers. If 1 < p <ocoand —+ — =1, o0rif p = 1l andq = oo, orif p = 0o
P q

and g = 1, then we say that p and q are conjugate exponents.

Lemma
(Young’s Inequality). Let p and g be conjugate exponents, with1 < p,q < oo and «, B > 0. Then

af < — + —.
p q

Proof. If p = 2 = ¢, then the inequality follows from the fact that (@ — ) > 0. Notice also, that if & = 0
or B = 0, then the inequality follows trivially.

If p # 2, then consider the function f : [0, c0) — R given by

af  pa
flo) = 7 + ? —af, for fixed g > 0.

Then, f'(a) = a?~! — B = 0 when a?~! = B. That is, when o = ,Bﬁ = ,3% > 0. We now apply
the second derivative test to the critical point @ = ,3% .

@)= (p—DaP™? >0, foralla € (0,00).
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Thus, we have a global minimum at ¢ = j 7. Itis easily verified that

B4 a? q
0= /(B%) < fla) = —+——aﬂwﬂ<—+—
q p q

for each o € [0, 00).

1.6.3 Theorem
(Holder’s Inequality for sequences). Let (x,) € £, and (y,) € {4, where p > land 1/p + 1/g = 1.

Then
1% %) % oo %
> eyl < (Z |xk|p) (Z |yk|q)
k=1 k=1

k=1

o0 o0 o0
Proof. If Z |xx]? =0 or Z |vk|? = 0, then the inequality holds. Assume that Z |xk|? # 0 and
k=1 k=1 k=1

o0
Z |vk|? # 0. Then for k = 1,2, ..., we have, by Lemma 1.6.2, that

| x| |Vl L x| L yel?
T TS o P N0 q
(Zlio=1 |xk|p)5 (Zlio=1 |yk|q)5 P D ket 1Xk] g ket |Vl

Hence,

Fodl 1 1

Zk_i|xkyk| LN

(002 Ixkl?)” (252 Il)s P 4

That is,

1.6.4 Theorem
(Minkowski’s Inequality for sequences). Let p > 1 and (x,) and (y») sequences in {,. Then

(i e+ mp)% < (i |xk|P)% + (gjl |yk|1’)%

k=1 k=1

10
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o0
Proof. Let g = Ll If Z |xx + yi|? =0, then the inequality holds. We therefore assume that
pP= k=1
o0
Z |xx + yk|? # 0. Then
k=1
o0 o0
Dk 4+ l? = Z Xk + yilP7 ek + ikl
) = .
< Z X+ 2l ] + Y bk + velP
k=1 k=1
=

00 ) L e 1
(Z Xk + yk|<"—“q) (Z |xk|1’) + (Z |yk|1’)
k=1 k=1 k=1

ilxk-Fykl”)% (g:llx;cl”)L (i:: ykl”)L

k=1

1
q

o0
Dividing both sides by (Z |xr + vk |1’) , we have
k=1

1 L

) )

==

[ee] % [ee] 1—
(Z|xk+yk|p) :(Z|xk+yk|p)
k=1 k=1

1.6.5 Exercise

[1] Show that the set of all n x m real matrices is a real linear space.

[2] Show that a subset M of a linear space X is a linear subspace if and only if ax + Sy € M
forall x,ye M andall o, 8 € F.

[3] Prove Proposition 1.3.4

[4] Prove Proposition 1.4.1.

[5] Prove Proposition 1.5.2.

[6] Show that ¢g is a linear subspace of the linear space £

[7] Which of the following subsets are linear subspaces of the linear space C[—1, 1]?

(a) My ={xeCl-1,1] : x(-1) =x()}.

1

(b) M, = {x e C[-1,1] : /x(t)dt =1

-1
(C) Ms = {x € C[—l, 1] : |x(t2) —x(t1)| < |[2 —[1| forall #,1, € [—1, 1]}

11
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[8] Show that if {M;} is a family of linear subspaces of a linear space X, then M = N, M, is a
linear subspace of X.

If M and N are linear subspaces of a linear space X, under what condition(s) is M U N a
linear subspace of X ?

12



Chapter 2

Normed Linear Spaces

2.1 Preliminaries

For us to have a meaningful notion of convergence it is necessary for the Linear space to have a notion
distance and therefore a topology defined on it. This leads us to the definition of a norm which induces a
metric topology in a natural way.

2.1.1 Definition
A norm on a linear space X is areal-valued function ||-| : X — R which satisfies the following properties:
Forallx,y € X and A € T,

NI x|l = 0;

N2, |x]| =0 <= x=0;

N3. ||Ax|| = [Alllx];
N4 x4yl < x| + ¥l (Triangle Inequality).
A normed linear space is a pair (X, || - ||), where X is a linear space and || - || a norm on X. The number

|| x| is called the norm or length of x.

Unless there is some danger of confusion, we shall identify the normed linear space (X, || - ||) with the
underlying linear space X .

2.1.2 Examples
(Examples of normed linear spaces.)

[1] Let X = F. For each x € X, define |x|| = |x|. Then (X, | - |) is a normed linear space.
We give the proof for X = C. Properties N1 -N3 are easy to verify. We only verify N4. Let
x,y € C. Then

Ix+ 12 =lx+y? = G+ +p)=&+NE+7F) =33+ 3%+ X7+ )7

= [xP+x7+xT+ [y = x]* +2Re(xP) + [y

< P H20xT 4+ 1P = x4 207+ P
=[x+ 20yl + Iy?
= (xI+ 1D = dxll+1yD>.
Taking the positive square root both sides yields N4. |

13
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[2] Let n be a natural number and X = ". For each x = (x;, x2,...,xn) € X, define
1
n 14
Ixll, = (Z |x,-|1’) , for 1<p<oo, and
i=1
[x¥loo = max [x;].
1<i<n

Then (X, ] - |l,) and (X, | - loc) are normed linear spaces. We give a detailed proof that
(X, |- 1lp) is a normed linear space for 1 < p < oco.

N1. Foreach 1 <i <n,

Sl

n n
|xi| >0 = Z|xi|p20 = (Z|xi|p) =0 = |x[l,=0.
i=1 i=1

N2. Forany x € X,

1
n P
Ixl, =0 <= (Zm-v’) =0
i=1

<— |x;|? =0 for alli=1,2,3,....,n
<— x;=0 forali=1,2,3,....n < x=0.

N3. Forany x € X andany A € I,

1 1
n p n p
Ixl, = (ZMx,-V’) =(|A|Pz|x,-|1’)
i=1 i=1
1
n D
Al (Zm-v’) = [Mlx,-
i=1

N4. Forany x,y € X,

x + ylp

n >
(z o +y,-|P)
i=1

L L
n p n p
(Z |x,-|1’) + (Z Iy,-lp) (by Minkowski’s Inequality)
i=1 i=1

= lxlp + xlp-

IA

[3] Let X = Bla, b] be the set of all bounded real-valued functions on [¢, b]. For each x € X,
define

[xlloo = sup |x(@).

a<t<b

Then (X, || - |lso) is @ normed linear space. We prove the triangle inequality: For any ¢ € [a, b]
andany x,y € X,

IX() +yOl < |xO + 1yO] = sup [x(@O+ sup [y(O)] = [[X[loo + [[¥]lo-

a<t<b a<t<b

14
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Since this is true for all ¢ € [a, b], we have that

¥ + ylleo = sup [x(1) + y(O] = [[Xlloo + [[¥llo-

a<t<b

[4] Let X = C[a, b]. For each x € X, define

¥l = sup ()]
a<t<b
1
b 2
Il = (/|x(r>|2dr) .

Then (X, | - |leo) @and (X, || - ||2) are normed linear spaces.

[5] Let X =¢,, 1 < p <oo. Foreach x = (x;){° € X, define

Ixll, = (Z |x,-|P)%.

Then (X, | - ||p) is a normed linear space.

[6] Let X = £, c OF co. FOr each x = (x;){° € X, define
X[l = llxlloo = sup |x;].
ieN
Then X is a normed linear space.

[7] Let X = L(C") be the linear space of all » x n complex matrices. For 4 € L£(C"), let

n

7(4) = ) (A)i; be the trace of 4. For 4 € L(C"), define

i=1

14l = vT(4*4) = J Yo ki (A = J o il

i=1 k=1 i=1 k=1

where A4* is the conjugate transpose of the matrix 4.

Notation
Let « be an element of a normed linear space(X, || - ||) and » > 0.
B(a,r) = {xe€ X ||x—a| <r} (Open ball with centre a and radius r);
Bla,r] = {x e X ||x—al <r}(Closed ball with centre ¢ and radius r);
S(a,r) = {xe€ X ||x—al =r} (Sphere with centre ¢ and radius r).

15
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Equivalent Norms

2.1.3 Definition

Let| -]l and || - ||, be two different norms defined on the same linear space X . We say that || - || is equivalent
to || - ||, if there are positive numbers o« and B such that

allx| < ||x]l, < Bllx|l, forall x e X.

2.1.4 Example

Let X = F". For each x = (x1, X2,...,Xx5) € X, let

n

" 4
Il = Jxil. ||X||2=(Z|xi|2) , and  [|x]loo = max |x;l.
im 1<i<n

i=1

We have seen that || - ||1, || -l and || - ||« are norms on X. We show that these norms are
equivalent.
Equivalence of || - ||; and || - ||eo: L€t X = (X1, X2,..., Xy) € X. Foreachk =1, 2, ..., n,
n n
il < Dl = max i <) il <= llxlleo < Il
i=1 sksn i=1
Also, fork =1, 2, ..., n,
n n
il = max x| = lxfloo = il =D xllo = nllxlloe =[xl < 1lXco-
=k=n i=1 i=1
Hence, [lx]lco = [lx]l1 < n]lx]|oo-
We now show that || - || is equivalent t0 || - [|o. Let x = (x1, x2,..., x,) € X. For each
k=1,2,...,n,

il < lxlloo = 1xkl? = (Ixl00)?

= Dl =) (Ixlleo)® = n(lx]l00)?

i=1 i=1

=  |xll2 £ Valx|co-

16
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Also, foreachk =1, 2, ..., n,

n 1/2
ME (lei|2> = x> = max [l < flxla <= xloo < ¥l
<K=<hn

i=1

Consequently, [|x]loo < [IX]l2 < +/7||x| 00, Which proves equivalence of the norms || - |2 and | - || co-

It is, of course, obvious now that all the three norms are equivalent to each other. We shall
see later that all norms on a finite-dimensional normed linear space are equivalent.

2.1.5 Exercise
Let V' (X) denote the set of norms on a linear space X. For || - || and || - ||, in A/(X), define a relation ~ by

I - =1, ifand onlyif | -| isequivalentto | -||,.

Show that 2~ is an equivalence relation on N'(X), i.e., 2~ is reflexive, symmetric, and transitive.

Open and Closed Sets
2.1.6 Definition
A subset S of a normed linear space (X, || - ||) is open if for each s € S there is an € > 0 such that
B(s,e) C S.
A subset F of a normed linear space (X, || - ||) is closed if its complement X \ F is open.

2.1.7 Definition B
Let S be a subset of a normed linear space (X, || - ||). We define the closure of .S, denoted by S, to be the
intersection of all closed sets containing S

It is easy to show that S is closed if and only if § = S.

Recall that a metric on a set X is a real-valued function d : X x X — R which satisfies the following
properties: For all x, y,z € X,

MI1. d(x,y) = 0;

M2. d(x,y) =0 < x =y;
M3. d(x,y) =d(y,x);

M4. d(x,z) <d(x,y) +d(y,z).

2.1.1 Theorem
(a) If (X, | - ||) is a normed linear space, then

d(x,y) =[x -yl

defines a metric on X . Such a metric d is said to be induced or generated by the norm || - ||. Thus,
every normed linear space is a metric space, and unless otherwise specified, we shall henceforth
regard any normed linear space as a metric space with respect to the metric induced by its norm.

(b) If d is a metric on a linear space X satistying the properties: For all x, y,z € X and forall . € T,

0] d(x,y)=d(x +z,y+z) (Translation Invariance)
(i) d(Ax,Ay) = |A|ld(x,y) (Absolute Homogeneity),

then
[x] = d(x,0)

defines anormon X .

17
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Proof. (a) We show that d(x, y) = ||x — y|| defines a metric on X. To that end, let x, y,z € X.
MI. d(x,y) = [lx — y|| = 0 by N1.

M2.
dx,y) =0 << |x—y|=0 <<= x—y=0byN2

=  x=y.

M3.

dix,y)=llx =yl =D =Xl = [=1ly—xl]  byN3

= lly—xl=dyx).

M4,

dx.z)=|x—z[l=lx=-»+ -2 = Ix=yl+Ily—zI byN4
= d(x,y)+d(y.2).
(b) Exercise. |

It is clear from Theorem 2.1.1, that a metric d on a linear space X is induced by a norm on X if and
only if d is translation-invariant and positive homogeneous.

2.2 Quotient Norm and Quotient Map

We now want to introduce a norm on a quotient space. Let M be a closed linear subspace of a normed
linear space X over F. For x € X, define

Ilx]ll == inf [¥].
yelx]

If y € [x], then y — x € M and hence y = x + m for some m € M. Hence
= inf = inf = inf - =d(x,M).
Il = inf vl = inf llx +ml = inf flx—m] = d(x. M)
Proposition

Let M be a closed linear subspace of a normed linear space X over F. The quotient space X /M is a
normed linear space with respect to the norm

I[x]ll := inf ||y||, where [x] € X/M.
yelx]

Proof.
N1. Itis clear that for any x € X, ||[x]|| = d(x, M) > 0.
N2. Forany x € X,
IX]=0 < dx,M)=0 < xeM =M < x+M =M =]|0].
N3. Forany x,y € X and A € F \ {0},

1Al = Ax]ll = d(hx. M) = yiEnAfl [Ax —yl = yienz\ff H)\ (x - %)H

= Al inf |x —z|| = [Ald(x, M) = [A[[|[x]]].
zeM

18
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N4. Let x, y € X. Then

X1+l =llx+yl = dx+y. M) = Inf X+ y—z|
= ZI’izlegM [x +y—(z1 + 22)|
= ZI,izglngl(x—m)Hy—Zz)ll
< z“izrzlgM X =zl + Iy — 22|l

= inf ||x —z{|| + inf —z
Jinf =z 4 inf [y =]

= dx,M)+d(y, M) = |[x][| + ¥

The norm on X'/ M as defined in Proposition 2.2.1 is called the quotient norm on X/ M .

Let M be a closed subspace of the normed linear space X'. The mapping Qs from X' — X/ M defined
by
Ouv(x)=x+ M, xelX,

is called the quotient map (or natural embedding) of X onto X/ M.

2.3 Completeness of Normed Linear Spaces

Now that we have established that every normed linear space is a metric space, we can deploy on a normed
linear space all the machinery that exists for metric spaces.

2.3.1 Definition
Let (x,)72 , be a sequence in a normed linear space (X, || - ||).

(a) (xp)52, is said to converge to x if given € > 0 there exists a natural number N = N (¢) such that
|x, — x| <€ for all n > N.
Equivalently, (x,);2, converges to x if
lim ||x, — x| =0.
n—0o0
If this is the case, we shall write

X, > x or lim x, = Xx.
n—>00

Convergence in the norm is called norm convergence or strong convergence.

(b) (xn);2, is called a Cauchy sequence if given € > 0 there exists a natural number N = N (€) such
that
|xn — xm|| <€ forall n,m > N.

Equivalently, (x,) is Cauchy if

lim ||x, — xn|| = 0.
n,m—00

19
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In the following lemma we collect some elementary but fundamental facts about normed linear spaces.
In particular, it implies that the operations of addition and scalar multiplication, as well as the norm and
distance functions, are continuous.

Lemma
Let C be a closed set in a normed linear space (X, || - ||) over IF, and let (x,) be a sequence contained in C
such that lim x, = x € X. Then x € C.

n—0o0

Proof. Exercise.

Lemma
Let X be a normed linear space and A a nonempty subset of X .

[1] |d(x,A) —d(y, A)| < ||x — y| forall x, y € X;

] TIxl =Wyl [ < llx =yl forall x, y € X;

[3] If xp — x, then || x| — [Ix]|;

[4] If x, > x and y,, — y, then X, + yn = X + p;

[5] If x, — x and @y, — o, then oy X, —> AX;

[6] The closure of a linear subspace in X is again a linear subspace;
[7] Every Cauchy sequence is bounded;

[8] Every convergent sequence is a Cauchy sequence.

Proof. (1). For any a € A4,
dix,4) < |x —all = |lx =yl + [y —al,

sod(x,A) < ||x—y|ll+d(y,A)ord(x, A)—d(y, A) < |x — y|. Interchanging the roles of x and y gives
the desired result.

(2) follows from (1) by taking 4 = {0}.

(3) is an obvious consequence of (2).

(4), (5) and (8) follow from the triangle inequality and, in the case of (5), the absolute homogeneity.

(6) follows from (4) and (5).

(7). Let (x,) be a Cauchy sequence in X. Choose #; so that |[x, — x,, || < 1 foralln > n;. By (2),
|Xnll <1+ ||xp, || forallm > ny. Thus

o]l < max{ [[xoll. ezl sl oo X1l T4 l1xn, (1

for all n.
(8) Let (x,) be a sequence in X which converges to x € X and let ¢ > 0. Then there is a natural
number N such that || x, — x| < % foralln > N. Foralln,m > N,

€ €
Xn = xXmll < Ixn — x| + |Xx —xm| < E"' E = €.

Thus, (x,) is a Cauchy sequence in X. |

Proposition
Let (X, ||-||) be a normed linear space over F. A Cauchy sequence in X which has a convergent subsequence
is convergent.

20
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Proof. Let (x,) be a Cauchy sequence in X and (x,, ) its subsequence which converges to x € X. Then,
for any € > 0, there are positive integers N and N, such that

€
lxn — xmll < 3 foralln,m > Ny

and ¢
| X, — x| < 3 forall k > N,.

Let N = max{N;, N,}. If k > N, then since n; > k,

€ €
It = X1l = 16k = |+ [, = x| < 5+ 5 = €.

Hence x,, — x asn — oo. |

Definition
A metric space (X, d) is said to be complete if every Cauchy sequence in X converges in X.

Definition
A normed linear space that is complete with respect to the metric induced by the norm is called a Banach
space.

Theorem
Let (X, | - ||) be a Banach space and let M be a linear subspace of X. Then M is complete if and only if
the M is closed in X .

Proof. Assume that M is complete. We show that M is closed. To that end, let x € M. Then there
is a sequence (x,) in M such that |[x, — x| — Oasn — oo. Since (x,) converges, it is Cauchy.
Completeness of M guarantees the existence of an element y € M such that ||x, — y|| — Oasn — oc.
By uniqueness of limits, x = y. Hence x € M and, consequently, M is closed.

Assume that M is closed. We show that M is complete. Let (x,) be a Cauchy sequence in M. Then
(xn) is a Cauchy sequence in X . Since X is complete, there is an element x € X such that ||x, — x| — 0
asn — oo. Butthen x € M since M is closed. Hence M is complete. |

Examples
[1] Let 1 < p < oo. Then for each positive integer n, (F", | - ||,) is a Banach space.

[2] For each positive integer n, (F", || - ||oo) is @ Banach space.

[3] Let 1 < p < oco. The sequence space ¢, is a Banach space. Because of the importance of
this space, we give a detailed proof of its completeness.

The classical sequence space {,, is complete.

Proof. Let (x,){° be a Cauchy sequence in £,. We shall denote each member of this
sequence by
Xn = (Xn(1), x(2),...).

Then, given € > 0, there exists an N(¢) = N € N such that

o0 G
||)Cn—)Cm||p:(Z|Xn(i)—xm(i)|p) <e forall n,m=>N.

i=1
For each fixed index i, we have

|X,() —xm(@i)| <€ foral n,m> N.
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[4]

That is, for each fixed index i, (x,(i)){° is a Cauchy sequence in IF. Since I is complete,
there exists x (i) € IF such that

Xp(i) > x() as n — oo.
Define x = (x(1), x(2),...). We show that x € £, and x, — x. To that end, for each k£ € N,

1
)

< |xn = Xmllp = (Z |xn (i) —xm(i)|1’) <e.

i=1

k
(Zm(i) —xm(i>|")
i=1

That is,
k

> lxn(i) = xm(i)P < €?, forall k=1,2.3,....
i=1

Keep k and n > N fixed and let m — oo. Since we are dealing with a finite sum,

k
D) = x (@) < P

i=1
Now letting & — oo, then foralln > N,

o0

D lxa(i) = x(@)|7 < €, 2.3.7.1)
i=1
which means that x, — x € £,. Since x, € {,, we have that x = (x — x,) + x, € {,. It also
follows from (2.3.7.1) that x, — x as n — oo. |
The space ¢, of all sequences (x;){° with only a finite number of nonzero terms is an in-

complete normed linear space. It suffices to show that ¢, is not closed in ¢, (and hence not
complete). To that end, consider the sequence (x;)7° with terms

x1 = (1,0,0,0,..)
1
= (1,-,0,0,0,...
X2 ( 2 )
11
X3 = (13572_23030303“‘)
11 1
Xpn = (1,5,2—2,...,2n—_1,0,0,0,...)
This sequence (x;){° converges to
11 1 1 1
XZ(I,E,Z—Z,...,ZH—_I,Z—H,W,...).

Indeed, since x — x, = (0,0,0.....0, 5, 5557 .. ), it follows that

2 G 1
X0 — x| =Zﬁ — 0asn — .
k=n

Thatis, x, > x as n — oo, but x ¢ £. [ ]
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[5] The space C;[—1, 1] of continuous real-valued functions on [—1, 1] with the norm

| 1/2

<tz = | [ <@
1
is an incomplete normed linear space.

To see this, it suffices to show that there is a Cauchy sequence in C,[—1, 1] which converges
to an element which does not belong to C»[—1, 1]. Consider the sequence (x,){° € C3[-1,1]

defined by
0 if —1<t=<0
xn(t) =4 nt if 0<r=<1
H 1
1 [ |
Y
Xn(t)
1 <4
|
|
|
|
: : :
-1 o] 1 1 t

We show that (x,)° is a Cauchy sequence in C;[—1, 1]. To that end, for positive integers m
and n such that m > n,

1

o=l = [Lsa®) = O
-1
1/m 1/n
= /[nt—mt]2 dt + /[l—nt]2 dt
0 1/m
1/m 1/n
= /[mztz—Zmnt2+n2t2] dt + /[I—Znt+n2t2] dt
0 1/m
l3 1/m l3 1/n
= (m*—=2mn+n? — + (t—nt2+n2—)
3 0 3 1/m

m? —2mn + n? _ (m —n)?

= —0 as n,m— oo.
3m2n 3m2n

Define
if —1<t<0

0
W)z{l it 0<i<1.
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Then x & C3[—1, 1], and

| L
1

| xn —x||§ = /[xn(t) —x()? dt = /[nt — 1P dt = e -0 as n— oo.
n

-1 0

Thatis, x, - x asn — oo. [ |

2.4 Series in Normed Linear Spaces

Let (x,) be a sequence in a normed linear space (X, || - ||). To this sequence we associate another sequence
n

(sp) of partial sums, where s, = Z Xk.

k=1
2.4.1 Definition
Let (x,) be a sequence in a normed linear space (X, || - ||). If the sequence (s,) of partial sums converges to
o0 o0
s, then we say that the series Z Xj converges and that its sum is s. In this case we write Z Xk = 5.
k=1 k=1

o0 o0
The series Z Xy, is said to be absolutely convergent if Z lxell < oo.
k=1 k=1

We now give a series characterization of completeness in normed linear spaces.

2.4.1 Theorem
A normed linear space (X, | - ||) is a Banach space if and only if every absolutely convergent series in X is
convergent.

o0 o0
Proof. Let X be a Banach space and suppose that Z |x;]| < co. We show that the series Z Xj converges.
j=1 j=1

n
To that end, let ¢ > 0 and foreach n € N, let s, = ij. Let K be a positive integer such that

j=1
o0

Z | x;|l < e. Then, forallm >n > K, we have
j=K+1

m

n m m o0 o0
lsm —sall = | D i = > x| = DX = DIl < D Ixll < Y gl <e.
1 1

n+1 n+1 n+1 K+1

IA

Hence the sequence (s, ) of partial sums forms a Cauchy sequence in X. Since X is complete, the sequence
o0

(s») converges to some element s € X . That is, the series Z X;j converges.
Jj=1
Conversely, assume that (X, || - ||) is a normed linear space in which every absolutely convergent series

converges. We show that X is complete. Let (x,) be a Cauchy sequence in X. Then there is an n; € N

such that [|x,, — xu| < % whenever m > nj. Similarly, there is an n, € N with ny > n; such that

|Xn, — Xmll < sz whenever m > n,. Continuing in this way, we get natural numbers n; < ny < --- such

24



24.2

2011 FUNCTIONAL ANALYSIS ALP

that || x,, —Xm| < ZL,( whenever m > ny. In particular, we have that for each k € N, | x|, —Xp, || < 27k,
For each k € N, let yx = Xp;, — Xn;,. Then

n n n
1
Dol =D omcyy = Xme < D 5
k=1 k=1

k=1

o0 o0
Hence, Z ||l < oo. That is, the series Z Yk is absolutely convergent, and hence, by our assumption,
k=1 k=1
) J
the series Z Yk is convergent in X. That is, there is an s € X such that s; = Z Yk — sas j — oo. It

k=1 k=1
follows that

Jj—o0

J J
sj = E Vi = E Xngqy = Xng]l = Xnjyy —Xng —> 5.
k=1 k=1

Jj—o0 . :
Hence Xnjpy —> S+ Xny. Thus, the subsequence (x,,k) of (x,) converges in X. But if a Cauchy
sequence has a convergent subsequence, then the sequence itself also converges (to the same limit as the

subsequence). It thus follows that the sequence (x,) also converges in X. Hence X is complete. ]

We now apply Theorem 2.4.1 to show that if M is a closed linear subspace of a Banach space X, then
the quotient space X/ M, with the quotient norm, is also a Banach space.

Theorem
Let M be a closed linear subspace of a Banach space X . Then the quotient space X/ M is a Banach space
when equipped with the quotient norm.

o0
Proof. Let ([x,]) be a sequence in X/ M such that Z [I[x;]ll < oco. For each j € N, choose an element
j=1
Yj € M such that .
lcj = pill < X0+ 277

o0 o0
It now follows that Z lx; — y;ll < oo, 1i.e., the series Z(xj — »j) is absolutely convergent in X. Since

Jj=1 Jj=1
o0

(e9)
X is complete, the series Z(x 7 — yj) converges to some element z € X. We show that the series Z[x 7]
j=1 j=1
converges to [z]. Indeed, for each n € N,

n n

Z[xj]_[z] = ij —[2]|| = ij—z
j=1

Jj=1 Jj=

IA

n n
> xj—z= v
Jj=1 Jj=1

n
= Z(xj—yj)—z — 0 as n— oo.
j=1
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Hence, every absolutely convergent series in X/ M is convergent, and so X/ M is complete. |

2.5 Bounded, Totally Bounded, and Compact Subsets of a Normed
Linear Space

Definition
A subset A of a normed linear space (X, | - ||) is bounded if A C B[x, r] for some x € X andr > 0.

It is clear that A4 is bounded if and only if there is a C > 0 such that ||a¢|| < C foralla € A.

Definition

Let A be a subset of a normed linear space (X, || - ||) and € > 0. A subset Ac C X is called an €-net for A
if for each x € A there is an element y € A such that | x — y|| < €. Simply put, Ac C X is an e-net for A
if each element of A is within an € distance to some element of A..

A subset A of a normed linear space (X, | - ||) is totally bounded (or precompact) if for any € > 0 there
is a finite ¢-net F¢ C X for A. That is, there is a finite set F. C X such that
AC U B(x,¢).
x€eF¢

The following proposition shows that total boundedness is a stronger property than boundedness.

Proposition
Every totally bounded subset of a normed linear space (X, || - ||) is bounded.

Proof. This follows from the fact that a finite union of bounded sets is also bounded. |

The following example shows that boundedness does not, in general, imply total boundedness.

Example

Let X = ¢, and consider B = B(X) = {x € X | ||x|| < 1}, the closed unit ball in X. Clearly, B
is bounded. We show that B is not totally bounded. Consider the elements of B of the form: for
jeNe =(0,0,...,0, 1,0, ...),where1occursinthe j-th position. Note that ||e; —¢;|,» = V2
for alli # j. Assume that an e-net B C X existed for 0 < € < JTE Then for each j € N,
there is an element y; € B such that |le; — y;|| < €. This says that for each j € N, there is an
element y; € B. such that y; € B(ej,¢). But the balls B(ej, €) are disjoint. Indeed, if i # j, and
z € B(ei,€) N B(ej, €), then by the triangle inequality

V2=ei—ejla <llei—z| + ||z —ej| <2¢ < V2,
which is absurd. Since the balls B(e;, €) are (at least) countably infinite, there can be no finite

e-net for B.

In our definition of total boundedness of a subset A C X, we required that the finite e-net be a subset
of X. The following proposition suggests that the finite e-net may actually be assumed to be a subset of 4
itself.
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Proposition
A subset A of a normed linear space (X, || - ||) is totally bounded if and only if for any € > 0 there is a finite
set Fe C A such that

AC U B(x,¢).

xeF¢

Proof. Exercise. ]
We now give a characterization of total boundedness.

Theorem
A subset K of a normed linear space (X, || - ||) is totally bounded if and only if every sequence in K has a
Cauchy subsequence.

Proof. Assume that K is totally bounded and let (x,) be an infinite sequence in K. There is a finite set of
points {y11, Y12, ..., y1r} in K such that

r
1
K c B 5)-

) 2

j=1
At least one of the balls B(y;, %), j =1, 2,..., r,contains an infinite subsequence (x,1) of (x,). Again,
there is a finite set {y21, V22, ..., V2s} in K such that

N
1
KBGOz 53)-
Jj=1

At least one of the balls B(y,;, ZLZ), j =1,2,..., s, contains an infinite subsequence (x,2) of (xp1).
Continuing in this way, at the m-th step, we obtain a subsequence (X ) of (X,(n—1)) Which is contained in

a ball of the form B (ymj, ZL,,,)

Claim: The diagonal subsequence (x,;) of (x,) is Cauchy. Indeed, if m > n, then both x,, and x,,, are
in the ball of radius 27". Hence, by the triangle inequality,

[ Xnn — Xmm| <2 — Oasn — oo.

Conversely, assume that every sequence in K has a Cauchy subsequence and that K is not totally
bounded. Then, for some € > 0, no finite €-net exists for K. Hence, if x; € K, then there is an x, € K
such that ||x; — x2|| > €. (Otherwise, || x1 — y|| < € forall y € K and consequently {x1} is a finite e-net
for K, a contradiction.) Similarly, there is an x3 € K such that

lx1 — x3]l = € and [lx2 — x3]| > €.

Continuing in this way, we obtain a sequence (x,) in K such that ||x, — X, || > € for all m # n. Therefore

(xn) cannot have a Cauchy subsequence, a contradiction. |
Definition

A normed linear space (X, || - ||) is sequentially compact if every sequence in X has a convergent subse-
quence.

Remark

It can be shown that on a metric space, compactness and sequential compactness are equivalent. Thus, it
follows, that on a normed linear space, we can use these terms interchangeably.
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Theorem
A subset of a normed linear space is sequentially compact if and only if it is totally bounded and complete.

Proof. Let K be a sequentially compact subset of a normed linear space (X, | - ||). We show that K is
totally bounded. To that end, let (x,) be a sequence in K. By sequential compactness of K, (x,) has a
subsequence (x5, ) which converges in K. Since every convergent sequence is Cauchy, the subsequence
(xn,, ) of (xp) is Cauchy. Therefore, by Theorem 2.5.1, K is totally bounded.

Next, we show that K is complete. Let (x,) be a Cauchy sequence in K. By sequential compactness
of K, (x,) has a subsequence (x,, ) which converges in K. But if a subsequence of a Cauchy sequence
converges, so does the full sequence. Hence (x,) converges in K and so K is complete.

Conversely, assume that K is a totally bounded and complete subset of a normed linear space (X, | - ||).
We show that K is sequentially compact. Let (x,) be a sequence in K. By Theorem 2.5.1, (x,) has a Cauchy
subsequence (x;, ). Since K is complete, (x;, ) converges in K. Hence K is sequentially compact. |
Corollary

A subset of a Banach space is sequentially compact if and only if it is totally bounded and closed.

Proof. Exercise. ]
Corollary

A sequentially compact subset of a normed linear space is closed and bounded.

Proof. Exercise. ]

We shall see that in finite-dimensional spaces the converse of Corollary 2.5.9 also holds.

Corollary
A closed subset F of a sequentially compact normed linear space (X, || - ||) is sequentially compact.

Proof. Exercise. |

2.6 Finite Dimensional Normed Linear Spaces

The theory for finite-dimensional normed linear spaces turns out to be much simpler than that of their
infinite-dimensional counterparts. In this section we highlight some of the special aspects of finite-dimensional
normed linear spaces.

The following Lemma is crucial in the analysis of finite-dimensional normed linear spaces.

Lemma
Let (X, | - ||) be a finite-dimensional normed linear space with basis {x1, X2, ... , Xn}. Then there is a
constant m > 0 such that for every choice of scalars a1, o3, ... , oy, we have
n n
mYy el < Y x;
j= j=
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n
Proof. IfZ loj] = 0, then; = 0 forall j =1, 2, ..., n and the inequality holds for any m > 0.
j=1
n
Assume that Z loej| # 0. We shall prove the result for a set of scalars {or;, @, ... , oy} that satisfy the
j=1
n
condition Z loej| = 1. Let
j=1
n
A={(ar 0a ... o) €F" | D o] = 1}.
j=1

Since A4 is a closed and bounded subset of ", it is compact. Define f : A — R by

n
flay, az, ..., ay) = Zozj Xj
Jj=1

Since for any (o1, @2, ..., o) and (By, B2, ..., Bp)in 4
n n
|flen. oa, o) = fBr. B oo Bl = | [D x| = DB x;
j=1 j=1
n n
< 1Dowxi—) B
j=1 j=1
n n
= D@ —=B)xi| <Y lej = Billxl
j=1 j=1
n
<  max |x; a; — Bil,
= s bl e

f is continuous on A. Since f is a continuous function on a compact set A, it attains its minimum on A4,
i.e., there is an element (41, (2, ... , Un) € A such that

f(uy, pa, ..y pn) =1inf{ f(ay, oz, ..., ay) | (@1, 02, ..., ay) € A}.

Letm = f(u1, M2, ..., Un). Since f > 0, it follows that m > 0. If m = 0, then

Zu]x] =0 :>Zu]x] =0
Jj= Jj=
Since the set {xi, X2, ... , Xp} is linearly independent, u; = O forall j = 1, 2, ..., n. Thisisa
contradiction since (41, (2, ... , in) € A. Hence m > 0 and consequently forall (¢, oz, ..., o) € 4,
n n
0<m= flag, oz, ..., ) & mZ|ozj| < Zocj X;j
j=1 j=1
n
Now, let {&1, @2, ... , oy} be any collection of scalars and set f = Z leej|. If B = 0, then the

Jj=1
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2%) On

inequality holds vacuously. If § > 0, then (%, F, g ) € A and consequently

Q

na.x. — - % B=f ﬂ’ _2’.”’“_” B>mB=m ; |ovj .
;] ’ ]Z;lﬂ ’ (ﬂ B ,3) ; !

n n
That is, m E loej]| < E aj xj|. ]
Jj=1 Jj=1

2.6.1 Theorem
Let X be a finite-dimensional normed linear space over F. Then all norms on X are equivalent.

Proof. Let {x;, x2, ... ,x,} be abasis for X and || - ||o and | - || be any two norms on X. For any x € X
n
there is a set of scalars {o1, o2, ... , oy} such that x = Z ajx;. By Lemma 2.6.1, there is an m > 0 such
j=1
that

n n
mY ol < | ajx;| = [x].
j=1 j=1
By the triangle inequality
n n
Ixllo < D lajllixjllo < MY lajl,
j=1 j=1

where M = max |x;|lo. Hence
1<j<n

1 m m
Xllo <M | —|x = —|xllo < ||x|| < «alx]o < |x||wherea = —.
Il =31 (vl ) = Sl < el Ixllo < x| -

Interchanging the roles of the norms | - ||o and || - ||, we similarly get a constant 8 such that || x| < B[ x|lo.
Hence, a||x|lo < ||x|| < B]lx]lo for some constants & and S. |

2.6.2 Theorem
Every finite-dimensional normed linear space (X, || - ||) is complete.

Proof. Let {x1, x2, ... ,X,} be a basis for X and let (z;) be a Cauchy sequence in X . Then, given any
€ > (0, there is a natural number N such that

lzx — z¢|| < eforallk,£ > N.

n
Also, foreach k € N, z;, = Z akjxj. By Lemma 2.6.1, there is an m > 0 such that

j=1
n
m Y lag; — o < llzi — ze|l.
j=1
Hence, forallk,£ > N andall j =1, 2, ..., n,

1 €
logj —agj|l < —llze — zell < —.
m m

30



2.6.2

2.6.3

2.6.3

2011 FUNCTIONAL ANALYSIS ALP

Thatis, foreach j =1, 2, ..., n, (ockj )k is a Cauchy sequence of numbers. Since F is complete, Qgj —
n
ask — oo foreach j =1, 2, ..., n. Define z = Zocjxj. Then z € X and
Jj=1
n n n n
lzk =zl = | D awjxi = Y ajx;| = > (axj —a)x;| <Y lewj —ejlllxjll — 0
j=1 j=1 j=1 j=1
as k — oo. That is, the sequence (zx) converges to z € X. hence X is complete. |
Corollary

Every finite-dimensional normed linear space X is closed.

Proof. Exercise. ]
Theorem
In a finite-dimensional normed linear space (X, || - ||), a subset K C X is sequentially compact if and only

if it is closed and bounded.

Proof. We have seen (Corollary 2.5.9), that a compact subset of a normed linear space is closed and
bounded.
Conversely, assume that a subset K C X is closed and bounded. We show that K is compact. Let

n
{x1, X2, ..., Xn} be abasis for X and let (zx ) be any sequence in K. Then foreachk € N, z; = Z oj X
j=1
Since K is bounded, there is a positive constant M such that ||zx || < M for all k € N. By Lemma 2.6.1,
there is an m1 > 0 such that

n n
mYy ol < | D auxi| = llzll < M.
j=1 j=1

It now follows that |oy;| < % foreach j =1, 2, ..., n, and for all k € N. That is, for each fixed j =
1, 2, ..., n, the sequence (ag;)x of numbers is bounded. Hence the sequence (a;)x has a subsequence

n
(@, j) which converges toaj for j =1, 2, ..., n. Setting z = Zocjxj, we have that
j=1

n n n
|ze, —z|| = Z“krjxj - Zajxj < Z lotge, j — aj|||xj]| = 0asr — oo.
Jj=1 Jj=1 Jj=1
That is, zx, — z asr — oo. Since K is closed, z € K. Hence K is compact. |
Lemma

(Riesz’s Lemma). Let M be a closed proper linear subspace of a normed linear space (X, | - ||). Then for
each 0 < € < 1, there is an element z € X such that ||z|| = | and

ly—z|| >1—¢€ for all y € M.
Proof. Choose x € X \ M and define

d=d(,M)=inf |lx—m]|.
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Since M is closed, d > 0. By definition of infimum, there is a m € M such that

d<|x—m| <d+ed=d(l +e).

m—x
Take z = — (”7) Then ||z|| = 1 and forany y € M,
m

—x|
ly—zl = Hy_’_( )H [y(lm —x|) + m — x|
[m — x| [[m — x|
€
||m—x|| d(1+e) l+e: Tire 1T

We now give a topological characterization of the algebraic concept of finite dimensionality.

2.6.4 Theorem
A normed linear space (X, || - ||) is finite-dimensional if and only its closed unit ball B(X) = {x €
X | |x|| < 1} is compact.

Proof. Assume that (X, || - ||) is finite-dimensional normed linear space. Since the ball B(.X) is closed and
bounded, it is compact.

Assume that the closed unit ball B(X) = {x € X | ||x|| < 1} is compact. Then B(X) is totally
bounded. Hence there is a finite %-net {x1, X2, ..., xp}in B(X). Let M =lin{xy, x2, ..., X}. Then
M is a finite-dimensional linear subspace of X and hence closed.

Claim: M = X. If M is a proper subspace of X, then, by Riesz’s Lemma there is an element xo € B(X)

such that d(x¢, M) > % In particular, ||xo — xg|| > % forall k =1, 2, ..., n. However this contradicts
the fact that {x;, x2, ..., X5} isa %-net in B(X). Hence M = X and, consequently, X is finite-
dimensional. |

We now give another argument to show that boundedness does not imply total boundedness. Let X' = £,
and B(X) = {x € X | || x]l2 < 1}. It is obvious that B(X) is bounded. We show that B(X) is not totally
bounded. Since X is complete and B(X) is a closed subset of X, B(X) is complete. If B(X') were totally
bounded, then B(X) would, according to Theorem 2.26, be compact. By Theorem 2.6.4, X would be
finite-dimensional. But this is false since X is infinite-dimensional.

2.7 Separable Spaces and Schauder Bases

2.7.1 Definition B
(a) A subset S of a normed linear space (X, || -||) is said to be dense in X if S = X;i.e., foreachx € X
and e > 0, thereisa y € S such that |x — y|| < e.

(b) A normed linear space (X, || - ||) is said to be separable if it contains a countable dense subset.

2.7.2 Examples
[1] The real line R is separable since the set Q of rational numbers is a countable dense subset
of R.

[2] The complex plane C is separable since the set of all complex nhumbers with rational real
and imaginary parts is a countable dense subset of C.

[3] The sequence space {,, where 1 < p < oo, is separable. Take M to be the set of all
sequences with rational entries such that all but a finite number of the entries are zero. (If
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the entries are complex, take for M the set of finitely nonzero sequences with rational real
and imaginary parts.) It is clear that M is countable. We show that M is dense in £,. Let
€ >0and x = (x,) € {,. Then there is an N such that

> €
p —
> Ixl? < 5
k=N+1
Now, for each 1 < k < N, there is a rational number g, such that |x; — gx|? < ;5. Set
qg=1(q1. g2, ..., 45, 0,0, ...). Thenqg € M and
N 00
Ix—qllp =Y Ixk—axl? + D Ixkl? <.
k=1 k=N+1

Hence M is dense in £,,.

[4] The sequence space £, with the supremum norm, is not separable. To see this, consider
the set M of elements x = (x,), in which x, is either 0 or 1. This set is uncountable since
we may consider each element of M as a binary representation of a number in the interval
[0,1]. Hence there are uncountably many sequences of zeroes and ones. For any two
distinct elements x, y € M, ||x — y|lo = 1. Let each of the elements of M be a centre of
a ball of radius % Then we get uncountably many nonintersecting balls. If 4 is any dense
subset of £, then each of these balls contains a point of A. Hence 4 cannot be countable
and, consequently, £, is not separable.

2.7.1 Theorem o
A normed linear space (X, || - ||) is separable if and only if it contains a countable set B such that lin(B) =
X.

Proof. Assume that X is separable and let 4 be a countable dense subset of X. Since the linear hull of A,
lin(A), contains A and A is dense in X, we have that lin(A) is dense in X, that is, W(A) = X.

Conversely, assume that X contains a countable set B such that lin(B) = X. Let B = {x, | n € N}.
Assume first that = R, and put

n
C = ijxj|kje(@,j:l,2,...,n,nEN
j=1

We first show that C is a countable subset of X. The set Q x B is countable and consequently, the family
F of all finite subsets of Q x B is also countable. The mapping

{x1). A x2), o Qo X)) > YA
j=1

maps F onto C. Hence C is countable. L
Next, we show that C is dense in X. Let x € X and € > 0. Since lin(B) = X, we can find an n € N,
points X1, X2, ... ,X, € Band Ay, Az, ... , A, € F such that

n
€
X —ijxj < —.
4 2

Jj=1
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Since Q is dense in R, for each A; € R, we can find a p; € Q such that

€
Ai— il < —— foralli =1, 2, ... ,n.
R TTOE P
Hence,

n n n n
X= ) owpxg| = X =Y hg | A DA = )
j=1 j=1 j=1 j=1

€ n
< §+Z|)\j—uj|||x]-||
j=1
€ - ellx;l € €
< -4y — -4 =
2 Zzn(1+||xj||) 22

j=1

This shows that C is dense in X.
If F = C, the set C is that of finite linear combinations with coefficients being those complex numbers with
rational real and imaginary parts.

We now give another argument based on Theorem 2.7.1 to show that the sequence space {,, where
1 < p < o0, is separable. Let ¢, = (8ym)men, Where

5. — lifn=m
nm 0 otherwise.

Clearly, e, € £,. Let € > 0 and x = (x;,) € £,. Then there is a natural number N such that

o0

Y |xkl? <e” forall n = N.
k=n+1

Now, if n > N, then
1/p
n o0
x—ijej = Z |xx [P <e.

Jj=1 k=n+1

P
Hence lin({e, | n € N}) = {,. Of course, the set {e, | n € N} is countable.

2.7.3 Definition
A sequence (by) in a Banach space (X, | - ||) is called a Schauder basis if for any x € X, there is a unique
sequence (o) of scalars such that

n
nlggo X — Zocjbj =0.
j=1

o0
In this case we write x = Z ajbj.

j=1

2.7.4 Remark

It is clear from Definition 2.7.3 that (b,) is a Schauder basis if and only if X = lin{b, | n € N} and

o0
every x € X has a unique expansion x = Y _ a;b;.
j=1
Uniqueness of this expansion clearly implies that the set {5, | n € N} is linearly independent.
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Examples
[1] For 1 < p < oo, the sequence (e,), where e, = (8pm)men, IS @ Schauder basis for £,,.

[2] (en) is a Schauder basis for c¢o.

[3] (en) U {e},wheree = (1, 1, 1,...) (the constant 1 sequence), is a Schauder basis for c.

[4] ¢ has no Schauder basis.

Proposition
If a Banach space (X, || - ||) has a Schauder basis, then it is separable.

Proof. Let (b,) be a Schauder basis for X. Then {b, | n € N} is countable and
lin({b, | n e N}) = X.

Schauder bases have been constructed for most of the well-known Banach spaces. Schauder conjectured
that every separable Banach space has a Schauder basis. This conjecture, known as the Basis Problem,
remained unresolved for a long time until Per Enflo in 1973 answered it in the negative. He constructed a

separable reflexive Banach space with no basis.

Exercise

[1] Let X be a normed linear space over F. Show that X is finite-dimensional if and only if every

bounded sequence in X has a convergent subsequence.
[2] Complete the proof of Theorem 2.1.1.
[3] Prove Lemma 2.3.2.
[4] Prove the claims made in [1] and [2] of Example 2.3.7.
[5] Prove Theorem 2.5.5.
[6] Prove Corollary 2.5.8.
[7] Prove Corollary 2.5.9.
[8] Prove Corollary 2.5.10.
[9] Prove Corollary 2.6.2.
[10] Is (Cla, b], || - |l1) complete? What about (C[a, b], || - |leo)? Fully justify both answers.
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Chapter 3

Hilbert Spaces

3.1 Introduction

In this chapter we introduce an inner product which is an abstract version of the dot product in elementary
vector algebra. Recall that if x = (xq,x2,x3) and y = (y1, 2, ¥3) are any two vectors in R3, then the
dot product of x and y is x - y = Xx1y1 + X2¥2 + x3y3. Also, the length of the vector x is ||x| =

/2 2 2
X7+ x5+ x5 =+X-X.
It turns out that Hilbert spaces are a natural generalization of finite-dimensional Euclidean spaces.

Hilbert spaces arise naturally and frequently in mathematics, physics, and engineering, typically as infinite-
dimensional function spaces.

Definition
Let X be a linear space over a field F. Aninner product on X is a scalar-valued function (-,-) : X xX — F
such that for all x, y,z € X and forall «, B € F, we have

IPI.
IP2.

(

(
IP3. (x,y) = (y.x) (The bar denotes complex conjugation.);

IP4. (

(

IP5. (x + y,z) = (x,z) + (y, 2).

An inner product space (X, (-, )) is a linear space X together with an inner (-, -) product defined on it. An
inner product space is also called pre-Hilbert space.

Examples
Examples of inner product spaces.

[1] Fix a positive integer n. Let X = F*. For x = (x1,x2,...,xz) and y = (y1, ¥2,..., V) In X,
define

(x.5) = > X7
i=1
Since this is a finite sum, (-,-) is well-defined. It is easy to show that (X, (-,-)) is an inner

product space. The space R” (resp. C") with this inner product is called the Euclidean
n-space (resp. unitary n-space) and will be denoted by £, (n).
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[2] Let X = £y, the linear space of finitely non-zero sequences of real or complex humbers. For
x = (x1,x2,...)and y = (y1, y2,...) in X, define

o0
(x, ) =D %,
i=1

Since this is essentially a finite sum, (-, -) is well-defined. It is easy to show that (X, (-,-)) is
an inner product space.

[3] Let X = ¢,, the space of all sequences x = (x1, x3,...) of real or complex numbers with

o0
Z:|x,-|2 < oo. For x = (x1,xz,...)and y = (y1, y2,...) in X, define
1

o0
(x, ) =D X,
i=1

In order to show that (-, ) is well-defined we first observe that if « and b are real numbers,
then

1
0 < (a—b)?, whence ab < E(a2 + b?).

Using this fact, we have that

gl = il 7] < 5 (lal? + il?) - = }?mmsi(XymP+§?%P < oo,
1= 1 1=

=1
Hence, (-, ) is well-defined (i.e., the series converges).

[4] Let X = Cla, b], the space of all continuous complex-valued functions on [a, b]. For x, y € X,

define
b

wJ»=/xmﬁ§m.

We shall denote by C[a, b] the linear space C[a, b] equipped with this inner product.
[5] Let X = L(C") be the linear space of all n x n complex matrices. For A € L(C"), let
(4) = Y _(A)i; be the trace of A. For A, B € £(C"), define

i=1
(4, B) = t(B*A), where B* denotes conjugate transpose of matrix B.

Show that (L(C"), (-,-)) is an inner product space.

It should be mentioned that we could consider real Hilbert spaces but there are powerful methods that
can be applied by using the more general complex Hilbert spaces.

3.1.1 Theorem
(Cauchy-Bunyakowsky-Schwarz Inequality). Let (X, (-,-)) be an inner product space over a field F.

Then forallx,y € X,
[{x. ) = VX x)V (p. ).

Moreover, given any x, y € X, the equality

[, ) =V {x, X))V (r. »)

holds if and only if x and y are linearly dependent.
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Proof. If x = 0 or y = 0, then the result holds vacuously. Assume that x # 0 and y # 0. For any o € F,
we have

O<(x—ay.x—ay) = (x,x)—aly,x)—a(x,y)+aa(y.y)
= (x,x)—&(x,y)—ot[(y,x)—&(y,y)].
Now choosing o = tx. ) , we have
Y. y)
T 285 165 N [ 301
{(r.) {(r.)

whence
[{x. ) = VX )V (». p).

Assume that |(x, y)| = /{(x,x)+/(», »). We show that x and y are linearly dependent. If x = 0 or
y = 0, then x and y are obviously linearly dependent. We therefore assume that x # 0 and y # 0. Then

(5. 3) £ 0. With = &2
(y, )

, we have that

2
X,

(x —ay,x —ay) = (x,x)—M =0.
(r.»)

That is,
(x —ay,x—ay)=0, = x=ay.

That is, x and y are linearly dependent.
Conversely, assume that x and y are linearly dependent. Without loss of generality, x = Ay for some
A € F. Then

Ay, ) = Ay, v = [A[(y, »)
MV V) = VARG V(. p) = Vrdn) V. p)
= V{x,x)v{y,»). u

[(x, )

Theorem
Let (X, (-, -)) be an inner product space over a field F. For each x € X, define

Ix] == v {x,x). (3.1.2.1)

Then || - || defines a norm on X . That is, (X, || - ||) is a normed linear space over F.

Proof. Let x, y € X and A € F. Then

N1 [|x]| = /{x,x) > 0;

N2. x| =0 < {x,x)=0 < (x,x)=0 < x =0, bylP2.

N3. [ax]l = V/{hxdx) = VIR (x,x) = [A]V/{x,x) = [A]]]x]l.
N4.
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lx+ylI> = (x+y.x+y) =(x.x)+ (x.0) + (.x) + (r.»)
=(x,x) + (x,») + {x,») + (¥, »)
= |[x]1? + 2Re(x, p) + Iy[* < Ix)I* + 21(x, »)| + 1)1

< x| 4+ 2v/{x, x)v/(, ) + ||¥|I*> (by Theorem 3.1.1)
= |IxI1® + 2x Iyl + IyI* = AxIl+ [y

Taking the positive square root both sides yields

e+ IF < llxll + 1yl u
In view of (3.1.2.1), the Cauchy-Bunyakowsky-Schwarz Inequality now becomes

[, 0 = DIx Iyl

Any inner product space can thus be made into a normed linear space in a natural way: by defining the norm
as in (3.1.2.1). The norm advertised in (3.1.2.1) is called the inner product norm or a norm induced or
generated by the inner product.

A natural question arises: Is every normed linear space an inner product space? If the answer is NO,
how then does one recognise among all normed linear spaces those that are inner product spaces in disguise,
i.e., those whose norms are induced by an inner product?

These questions will be examined later.

3.1.3 Theorem
(Polarization ldentity). Let (X, (-, -)) be an inner product space over a field F. Then forall x,y € X,

Ix + 12 x—yl?

(x,y) = 2 1 if F=R, and
Ix +y12  lx =2l | ez Il =2ill?) .
(x3) = i\ T if F=C.

Proof. Assume that F = R. Then

(x+y.x+y)—{x—yx—-y)
(X,X)+(X,y>+ (yvx)+ (yvy)_(xvx)+ (X,y)+ (yvx)_(y’y)
4(x,y), since (x,y)=(y,x).

Ix + »II* = flx = yII?

The case when F = C is proved analogously and is left as an exercise. |

3.1.4 Theorem
(Parallelogram Identity). Let (X, (-, -}) be an inner product space over a field F. Then for all x,y € X,

Ix = 212 + llx + ylI2 = 20x)1* +2[1y)12. (3.1.4.1)

Proof.

Ix = »I? + llx + yI1? (X =y x =)+ {x+y.x+y)
(x,x)—(x,y)—(y,x)+(y,y)+(x,x)+(x,y)+(y,x)+(y,y)

20lx)1* + 20 p012. u

The geometric interpretation of the Parallelogram Identity is evident: the sum of the squares of the
lengths of the diagonals of a parallelogram is equal to the sum of the squares of the lengths of the four
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sides.

The following theorem asserts that the Parallelogram Identity (Theorem 3.1.4) distinguishes inner prod-
uct spaces among all normed linear spaces. It also answers the question posed after Theorem 3.1.2. That is,
a normed linear space is an inner product space if and only if its norm satisfies the Parallelogram Identity.

3.1.5 Theorem
A normed linear space X over a field IF is an inner product space if and only if the Parallelogram Identity

Ix = pI1 + llx + pII2 = 2l1x)* + 2] y)1? (PI)
holds forall x,y € X.

Proof. “=>". We have already shown (Theorem 3.1.4) that if X is an inner product space, then the parallel-
ogram identity (PI) holds in X.

“«<". Let X be a normed linear space in which the parallelogram identity (PI) holds. We shall only
consider the case ' = R. The polarization identity (Theorem 3.1.3) gives us a hint as to how we should
define an inner product: For all x, y € X, define

x+y2 xX—y|?
{x.y) = _H 2 H ‘

2

We claim that (-, -) is an inner product on X.

2
X+ x

2

—x 2
| =1~ =0
2

IPL. (x,x) = H al

IP2. (x,x)=0 <= [x|?=0 < x=0.

2 2
+ — 2 + —x 2
N e T e el b B el
2 2 2 2

= (y,x) = (y,x) since F = R.
IP5. Replace x by # 4+ v and y by w + v in the parallelogram identity:
lu+w~+20)% + lu —w|?® = 2||u + v||* + 2||w + v (3.1.5.1)
Replace x by u — v and y by w — v in the parallelogram identity:
lu+w—20)% + lu—w|?=2|lu—v|?+2||w—v|>. (3.1.5.2)
Subtract (3.1.5.2) from (3.1.5.1):

ot + w4 20]2 = flu -+ w = 2007 =2 [Ju + 0l = Ju = 0] + o + w2 = flo = w)?].
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Use the definition of (-, -),
1
4(u + w,2v) = 8[{u,v) + (w,v)] = E(u + w, 2v) = (u, v) + (w, v). (3.1.5.3)

Take w = 0:

S 20) = (u,v) (3.1.54)

Now replace u by x + y and v by z in (3.1.5.4) and use (3.1.5.3) to get
1
(X+y,Z) = E(X+y,22) = (X’Z) + (y,Z).

IP4. We show that (Ax, y) = A(x, y) forallL € Rand all x, y € X. If A = n is a nonzero integer, then

using IP5,
ey =nixy) = n(>y)= () = (o).

That is,
X 1
(_v y> = —(X, y)
n n

If A is a rational number, A = £, say. Then

E’
P o Ix \ _p
<—x,y> = p<—,y> = —(x, ).
q q q

If A € R, then there is a sequence (rg) of rational numbers such that rp — A as k — oco. Using
continuity of the norm, we have that

2

(A y= (1l )y = —1 li + 2—— li -
x,y)=(lm rgx, = m rgx m rgXx
y s kX, Y 4 % k y s k y
1
= - lim |rex 4+ y|* = = lim |rex — y|)?
4k ”k y” 4 ”k y”

= lim (
k—o00

= lim (rgx, y)
k—o0

rex +y 2 Hrkx—yHZ
2 2

= klim re{x, y) = A(x, ).

Thus, (Ax, y) = A(x,y) forall L e Randall x, y € X. |

3.1.3 Corollary
Let (X, || - ||) be a normed linear space over a field F. If every two-dimensional linear subspace of X is an
inner product space over I, then X is an inner product space.

3.1.4 Examples
[1] Let X = £,, for p # 2. Then X is not an inner product space. We show that the norm
on {,, p # 2 does not satisfy the parallelogram identity. Take x = (1,1,0,0,...) and
y=(,-1,0,0,...)in {,. Then

1
x|l =27 =y and [x+yl=2=|x-y|.
Thus,

2
)

Ix + pI% + llx = ylI> =8 # 2||x|* + 2| y|> = 4-27.
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[2] The normed linear space X = C[a, b], with the supremum norm || - || is not an inner product
space. We show that the norm

[Xlloo = max [x(?)]
a<t<b

does not satisfy the parallelogram identity. To that end, take

x(@t) =1 and y() = Z:Q
Since f [
x@)+y@t)=14——— and x(@)—y@)=1- ,
b—a b—a
we have that
Ixll=1=1l. and [x+yl=2, [x—yl=1

Thus,
lx + yI? + llx = pI* =5 # 2| x[* + 2[|ylI> = 4.

3.2 Completeness of Inner Product Spaces

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean
space. Hilbert spaces, as the following definition states, are inner product spaces which in addition are
required to be complete, a property that stipulates the existence of enough limits in the space to allow the
techniques of calculus to be used.

The earliest Hilbert spaces were studied from this more abstract point of view in the first decade of
the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in
the theories of partial differential equations, quantum mechanics, Fourier analysis which includes applica-
tions to signal processing, and ergodic theory which forms the mathematical underpinning of the study of
thermodynamics.

Definition
Let (X, (-,-)) be an inner product space. If X is complete with respect to the norm induced by the inner
product (-, -), then we say that X is a Hilbert space.

Examples
[1] The classical space ¢, is a Hilbert space.

[2] £y is an incomplete inner product space.

[3] The space C[—1, 1] is an incomplete inner product space.

3.3 Orthogonality

Definition
Two elements x and y in an inner product space (X, (-, -)) are said to be orthogonal, denoted by x L y, if

(x,y)=0.

The set M C X is called orthogonal if it consists of non-zero pairwise orthogonal elements.
If M is a subset of X such that (x,m) = 0 forallm € M, then we say that x is orthogonal to M and write
x 1 M. We shall denote by

Mt={xeX:(x,m)=0Vme M}
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the set of all elements in X that are orthogonal to M . The set M~ is called the orthogonal complement
of M.

3.3.2 Proposition
Let M and N be subsets of an inner product space (X, (-, -)). Then

[1] {0}t = X and X+ = {0O};
[2] M~ isaclosed linear subspace of X;
3] M ¢ (M+Y)yr = M+,
[4] If M is a linear subspace, then M N M+ = {0};
[5] If M C N,then N* C M+,
[6] M+ = (linM)* = (linM)*.
Proof.
[1] Exercise.

[2] Letx, y € M+, and a, B € F. Then foreach z € M,
{(ax+ By.z) = afx,z) + B(y.z) = 0.

Hence, ax + By € M+, Thatis, M+ is a subspace of X. To show that M+ is closed, let x € M L.
Then there exists a sequence (x,) in M L such that x, — x as n — oo. Thus, for all yeM,

{x, y) = lim(xy, y) =0,

whence x € M+
[3] Exercise.
[4] Exercise.

[5] Letx € N+t. Then (x, y) = Oforall y € N. In particular, (x, y) = 0 forall y € M since M C N.
Thus, x € M.

[6] Since M C linM C linM, we have, by [5], that (linM )+ C (linM )+ C M. It remains to show
that M+ C (linM)*. To that end, let x € M *. Then (x, y) = 0 for all y € M, and consequently
(x,y) = 0forall y € linM. If z € linM, then there exists a sequence (z,) in linM such that z,, — z
as n — 0o. Thus,

(x,z) = lir{n(x, zn) = 0,

whence x € (linM)*. ]

3.3.3 Examples

Let X = R3. The vectors (—3,0,2) and (4, 1, 6) are orthogonal since

((—3,0,2),(4,1,6)) = (—=3)(4) + 0(1) + (2)(6) = 0. ]
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It M = {,, the linear subspace of ¢, consisting of all scalar sequences (x;)7° with only a finite
number of nonzero terms, then M+ = {0}. Indeed, suppose that y = (y;)%2, € M*. Let

1 it i=
5,‘j=
0 if i# .

and e, = (6,j) Then e, € M foreach n € N, and hence,

o0
n,j=1"
o0
0=(y.e)=Y ydj=y foral i=12 ..
j=1
That is, y = 0, whence M+ = {0}.

3.3.1 Theorem
(Pythagoras). Let (X, (-, -)) be an inner product space over a field[F and let x,y € X.

[1] IfF =R, then x L y if and only if
Ix + 212 = lIx]% + 1112
[2] If F = C, then x L y if and only if
Ix + p1? = llx ] + 1yI1* and |lx +iyl* = |x]I* + [ y]*.
Proof. [1] “=". If x L y, then
Ix + 217 = (x + y.x + y) = (x.x) + 20, p) + (r.3) = Ix1? + )%
“ <. Suppose that ||x + y||* = |x||* + | ¥]|*>. Then

(x+y,x+y) =&xx)+{,»)
= (xx)+2x, )+ .y =(xx)+ ()
= 2{x,y)=0 = (x,y)=0.

[2] “=". Assume that x | y. Then

lx + yill> = (x+ yi.x+ yi) = (x,x)+ (x, yi) + (yi.x) + (yi, yi)
= (x,x)—i{x, ) +i(y.x)+ (r.y) = Ix|* + lIyl>

“e”. Assume that |x + y[|> = ||x]|> + [|y|*> and |x +iy||®> = |x]||*> + ||¥]|*>. Then

(x+y.x+y) = (x.x)+ ()
= xx)+xN+x)+y) = (xx)+ ()
= (x,»+x)=0 = 2Re(x,y)=0 = Re(x,y)=0.
Also,
(x +yi,x + yi) = (x,x) + (y, »)
= (xx) =il p)+i{p.x)+(r.y) = (x,x) + (y. y)
= —i{x,»)+i(y,x)=0
= —il{x.y)=(.x)]=0
= =il -] =0
= —i2iTm{x,») =0 = JTmx,y)=0
Since Re(x, y) = 0 = Im(x, y), we have that (x, y) = 0. [ |
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Corollary
If M = {x1, xa,...,X,} is an orthogonal set in an inner product space (X, (-,-)) then
n 2 n
S| = Yl
i=1 i=1
Proof. Exercise. ]

3.4 Best Approximation in Hilbert Spaces

Definition
Let K be a closed subset of an inner product space (X, (-, -)). Fora given x € X \ K, abest approximation
or nearest point to x from K is any element yo € K such that

lx=yoll = llx =yl forall yeK.
Equivalently, yo € K is a best approximation to x from K if

lx = yoll = inf [|x — y[| = d(x, K).
yekK

The (possibly empty) set of all best approximations to x from K is denoted by Pk (x). That is,
Pg(x) ={y € K:|x—y| =d(x K)j.

The (generally set-valued) map Pk which associates each x in X with its best approximations in K is
called the metric projection or the nearest point map. The set K is called

[1] proximinal if each x € X has a best approximation in K ; i.e., Pg(x) # @ for each x € X;
[2] Chebyshev if each x € X has a unique best approximation in K; i.e., the set Px(x) consists of a

single point.

The following important result asserts that if K is a complete convex subset of an inner product space
(X, (-,-)), then each x € X has one and only one element of best approximation in K.

Theorem
Every nonempty complete convex subset K of an inner product space (X, (-, -)) is a Chebyshev set.

Proof. Existence: Without loss of generality, x € X \ K. Let

§ = inf ||x — y|.
yngllx ll

By definition of the infimum, there exists a sequence (,){° in K such that
|lx—yull 8 as n— oo.

We show that (y,){° is a Cauchy sequence. By the Parallelogram Identity (Theorem 3.1.3),

[(x = yn) — (x — ym)||?
= 2x = yull® +20x = yml* = 2% = (n + ym)|I?

y— Yn + Ym
2

20x = yul® + 201x = yml|* — 482,

I ym — yull®

2
_ mw—yw2+mw—yMV—4‘

IA
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Yn+ Y

since ™ € K by convexity of K. Thus,

[ym = yall® < 2llx = yull* + 2llx — ym)|* —46* > 0 as n,m — oo.

That is, (y,){° is a Cauchy sequence in K. Since K is complete, there exists y € K such that y, —
y as n — oo. Since the norm is continuous,

v =yl = o = lim yull = | Jim (x = o) = lim_ x| = 5.

Thus,
[x =yl =6 =d(x, K).

Uniqueness: Assume that y, yo € K are two best approximations to x from K. That is,
lx = yoll = llx =yl = & = d(x, K).
By the Parallelogram Identity,

0<ly=wll* = I0=x)+ &=yl
2fx = 1% + 2llx = yoll*> = 12x = (v + yo)|I?

NEEZE
2

Thus, yo = y. |

= 282 +25*—4

46% —45% = 0.

IA

3.4.2 Corollary
Every nonempty closed convex subset of a Hilbert space is Chebyshev.

The following theorem characterizes best approximations from a closed convex subset of a Hilbert
space.

3.4.2 Theorem
Let K be a nonempty closed convex subset of a Hilbert space (H, (-,-)), x € H\ K and yo € K. Then yq
is the best approximation to x from K if and only if

Re(x — yo, y— yo) <0 forall y € K.

Proof. The existence and uniqueness of the best approximation to x in K are guaranteed by Theorem 3.4.1.
Let yo be the best approximation to x in K. Then, forany y € K andany 0 <A < [, Ay + (1 —=A)yo € K
since K is convex. Thus,

lx=woll> < llx=[Ay 4+ 1 =Myolll> = [(x — yo) — A(y — yo)II?

(x = 0) = A(y = ¥0), X — yo) — A(y — »o))

(x = y0.Xx = yo) = Al{x = yo.» — yo) + (¥ — yo. X — Yo)]
+1%(y — y0.¥ — yo)

Il = yoll* = 2A%Re({x — yo. ¥ — yo)) + A%[ly — yoll?
= 20%Re((x —yo.y —y0)) =< A*|y—yol®

A 2
E||y—yo|| .

IA

= Re((x — o,y — yo))
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A
As A — 0, E||y — yo||?> = 0, and consequently Re(x — yo, ¥ — ¥o) < 0.
Conversely, assume that for each y € K, Re(x — yo, ¥y — yo) < 0. Then, for any y € K,

lx=yI*> = llx=y0)—(—yol?

= {(x—=yo0) = (¥ = y0). (x = yo) = (¥ = yo))
= (x—=y0,x = y0) —(x =0, — yo) = (¥ — Yo, X — yo) + (¥ — Yo, ¥ — o)
= (x—=yo,x —yo) —[(x = ¥o, ¥ = ¥o) + (¥ — yo, x — yo)| + (¥ — »0, ¥ — »o)
= (x—=yo,x = yo) —[{(x = ¥o,y = ¥o) + (x = 0, ¥ — yo)| + (¥ — »0, ¥ — »o)
= |lx = yoll> = 2Re(x — yo. ¥ — yo) + Iy — ol
> [lx — yoll*.

Taking the positive square root both sides, we have that || x — yo| < ||x — y| forall y € K. ]

As a corollary to Theorem 3.4.2, one gets the following characterization of best approximations from a
closed linear subspace of a Hilbert space.

Corollary

(Characterization of Best Approximations from closed subspaces). Let M be a closed subspace of a
Hilbert space H and let x € H \ M. Then an element yo € M is the best approximation to x from M if
and only if (x — yo, y) = 0 forall y € M (i.e., x — yo € ML),

Corollary 3.4.3 says that if M is a closed linear subspace of a Hilbert space H, then yo = Pas(x)
(i.e., yo is the best approximation to x from M) if and only if x — Pas(x) L M. That is, the unique best
approximation is obtained by “dropping the perpendicular from x onto M. It is for this reason that the
map Pas : x — Par(x) is also called the orthogonal projection of H onto M .

PMX

Example

Let X =Cy[—1,1], M =P, = lin{l,¢,t?}, and x(¢) = ¢3. Find Pps(x).

Solution. Note that C,[—1, 1] is an incomplete inner product space. Since M is finite-dimensional, it
is complete, and consequently proximinal in C;[—1, 1]. Uniqueness of best approximations follows
from the Parallelogram Identity.
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2
Let yo = Za,-ti € M. By Corollary 3.4.3,

i=0

yo = Py(x) <=

3
Thus, PM(X) =Y = gl.

3.4.3 Theorem

X—yoEMl
(x—yo,t/y =0 forall j =0,1,2

2
<t3—Za,-t",tj>=0 for all j =0,1,2
i=0
2
i, )= (>, Yforall j =012
i=0
2 1 1
Za;/li-l‘j dlz/l3-l‘jdl forall j =0,1,2
i=0 Y e
2 1 1
Zai/lH'j dt =/l3+j dt forall j =0,1,2
i=0 Y e
2 p+i+r ! (it
o =
; 'i+j+li|_1 j+4
2

;aiﬁ [1 _ (_1)i+j+1] _ ]lﬁ [1 _ (_1)j+4]

forall j =0,1,2

1
} forall j =0,1,2
-1

20[0+00{1+§062 =0
00[0+%061+00[2 :%
%0[0-1—00[14—%062 =0
3
0[020, o1 Zg, 06220.

(Projection Theorem). Let H be a Hilbert space, M a closed subspace of H. Then

[1] H= M @& M. That is, each x € H can be uniquely decomposed in the form

2] M = M++.

Proof.

x=y+z withyeM andz e M+,

[1] If x € M, then x = x + 0, and we are done. Assume that x ¢ M. Let y = Pas(x) be the unique
best approximation to x from M as advertised in Theorem 3.4.1. Then z = x — Pps(x) € M+, and

x=Pyx)+x—Pulx)=y+:z

is the unique representation of x as a sum of an element of M and an element of M *.
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[2] Since the containment M C M L1 s clear, we only show that M Ll c M. To that end, let x €
ML Then by [1] above

x=y+z  where ye M and ze Mt

Since M C M~ and M1+ is a subspace, z = x —y € M*+. Butz € M~ implies that
ze M1 N M1L which, in turn, implies that z = 0. Thus,x = y € M.

Corollary
If M is a closed subspace of a Hilbert space H, and it M # H, then there exists z € H \ {0} such that
z1l M.

Proof. Let x € H \ M. Then by the Projection Theorem,
x =y +z, where y € M and ze Mt

Hencez # 0andz L M. ]

Proposition
Let S be a nonempty subset of a Hilbert space H. Then

[1] S+ =1inS.
[2] St = {0} ifand only if linS = H.
Proof.

[1] Since S+ = (IinS)* by Proposition 3.3.2, we have, by the Projection Theorem, that
linS = (linS)+ = s++.

[2] If S+ = {0}, then by [1]
linS = St = {0} =H.

On the other hand, if H = linS, then H = S+ by [1], and so

st =gt =1t =0y [}
3.5 Orthonormal Sets and Orthonormal Bases

In this section we extend to Hilbert spaces the finite-dimensional concept of an orthonormal basis.

Definition
Let (X, (-,-)) be an inner product space over F. A set S = {xo : @« € A} of elements of X is called an
orthonormal set if

(@) (xq,xg) =0 forall o # B (ie., S isan orthogonalset), and
(b) |xall =1 forall « < A.

If S = {xq : @ € A} is an orthonormal set and x € X, then the numbers (x, xo) are called the Fourier

coefficients of x with respect to S and the formal series Z (x, xq)xq the Fourier series of x.
a€EA
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3.5.1 Theorem
An orthonormal set S in a separable inner product space (X, (-, -)) is at most countable.

Proof. If S is finite, then there is nothing to prove. Assume that S is infinite. Observe thatif x,y € S,
then || x — y|| = +/2 (since x and y are orthonormal). Let D = {y, | n € N} be a countable dense subset

of X. Then to each x € S corresponds an element y, € D such that ||x — y,| < “/TE . This defines a map
f S — Ngiven by f(x) = n, where n corresponds to the y, as indicated above. Now, if x and y are
distinct elements of S, then there are distinct elements y, and y,, in D such that

V2 V2
[x — yull < Tand ly —ymll < s

Hence,
V2 V2
V2= |x =yl < Ix = yall + 1vn = ymll + Iym =yl < -t |yn — yml = - < e = ymll

and so ¥, # Ym. In particular, n # m. Thus, we have a one-to-one correspondence between the elements
of S and a subset of N. ]

3.5.2 Definition
An orthonormal set S in an inner product space (X, (-,-)) is said to be complete in X if S C T and T is
an orthonormal setin X, then S = T .

Simply put, a complete orthonormal set S in an inner product space is an orthonormal set that is not
properly contained in any other orthonormal set in X; in other words, S is complete if it is a maximal
orthonormal set in X.

It is easy exercise to show that a set S is complete in an inner product (X, (-, -)) if and only if S+ = {0}.

3.5.3 Examples
[1] InR3 the set S = {(1,0,0), (0, 1,0), (0,0, 1)} is orthonormal.

[2] In,, let S = {e, : n € N}, where e, = (81, 821, ...) With

5o 1 =
v 0 otherwise.

Then S is an orthonormal set. Furthermore, for each x = (x;){2, € {2, (x,en) = x, for all n.
Thus
(x,ey) =0foralln <— x,=0 foralln < x=0.

Thatis, S+ = {0}, hence, S is complete in ¢5.

3.5.2 Theorem
Let (X, (-,-)) be a separable inner product space over F.

[1] (Best Fit). If{x1, x2, ..., Xx,} is a finite orthonormal set in X and M = lin{x1, X3, ..., X,}, then for
each x € X there exists yo € M such that

lx = yoll = d(x. M).

n

In fact, yo = Z(x,xk)xk.
k=1
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[2] (Bessel's Inequality). Let (x,)52, be an orthonormal sequence in X . Then for any x € X,

o0
> Hx X < lx )

k=1
In particular, (x, xx) — 0 ask — oo.
Proof.
[1] For any choice of scalars A1, Az, ..., Ay,
n 2 n n
x—Zkkxk = <x—ZAixi,x—Zijj>
k=1 i=1 Jj=1
= ||x||2—Zx,«x,-,x)—zmx,xj) + Zm_,-
= |x)*- ZA X, X;) Z}\ X, X)) +ZA A
= x>+ Z[m_,-— i) = Rifx, ) + (e, xi) () |
_Z(X,xi)(x xl
= IIXIIZ+Z xxz)()\—(xxz)]—ZIXXI
i=1
= IIXIIZ+Z — {x.xi)) (i — xxz)]—Z|xx,
= |xI*- Z |(x, xi)|* + Z A — (x, %) [?
i=1 i=1
n 2
Therefore, ||x — Z)»kxk is minimal if and only if A, = (x, x;) foreach k =1, 2, ...,

k=1

[2] For each positive integer 7, and with A = (x, xg), the above argument shows that

n 2 n
2 2
X = x| = xlP =D x|
i=1

k=1

0<

Thus,

n

D e x) < x|

k=1

Taking the limit as n — 0o, we get

o0
3 e x) 2 < el

k=1
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3.5.3 Theorem
(Riesz-Fischer Theorem). Let (x,){° be an orthonormal sequence in a separable Hilbert space H and let

o0
(cn)T° be a sequence of scalars. Then the series Z cx Xy converges in H if and only if ¢ = (c,){° € £>. In
k=1
this case,
o0 oo 3
Y axk| =D lekl
k=1 k=1

o0
Proof. Assume that the series Z cx Xk converges to x. Then for each j,n € N,
k=1

n n
ZCka,x]' = ZCk(Xk,Xj) =cj.
k=1 k=1

Using continuity of the inner product

oo n

(x,x;) = E CkXk,Xj ) = lim E CkXk,Xj ) = lim ¢j = ¢j.
k n—0o0 p n—0o0
=1 =1

By Bessel’s Inequality, we have that

o0 o0
D el =7 o xi) P < flx)? < oo
k=1 k=1

That is, ¢ = (cp){° € £5.
n

Conversely, assume that ¢ = (c,){° € l,. Set z, = Z cipXy. Thenfor 1l <n < m,

k=1
m 2 m
lzn — zm||* = Z Xkl = Z lck|? = 0 asn — oo.
k=n+1 k=n+1

Hence, (z,)$° is a Cauchy sequence in H. Since H is complete the sequence (z,){° converges to some
o0

Xx € 'H. Hence the series Z cx Xk converges to some element in H.

k=1
Also,
2 2

o0 n n

E kXl = lim E kXl = lim E lex|”,
n—o0o n—00

k=1 k=1 k=1

whence,

2

o0 o0
Y x| =D lekl
k=1 k=1

Note that Bessel’s Inequality says that

oo

D Hx xi) P < x| < oo

k=1
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o0
That is, ({x, x,)){° € £>. Hence, by Theorem 3.5.3, the series Z (x, xg)xg converges. There is however

k=1
no reason why this series should converge to x. In fact, the following example shows that this series may

not converge to x.

Example
Let (en) € €2, where e, = (811, 621, .. .) With

5 = 1 ifi =
v 0 otherwise.

For each n € N, let f, = e,41. Then (f,)52, is an orthonormal sequence in £,. For any x =
(xn){° € L2,

o0 o0
Z X, fi) Ji Z X, ekt1)€k+1 = (0,x2,x3,...) # (x1,x2,X3,...) = X.

k=1 =

Definition
Let (X, (-,-)) be an inner product space over F. An orthonormal set {x,} is called an orthonormal basis
for X if foreach x € X,

o0
(x, xp)x
k=1
n
That is, the sequence of partial sums (s,), where s, = Z(x, Xk )Xk, converges to x.
k=1

Theorem
Let H be a separable infinite-dimensional Hilbert space and assume that S = {x,} is an orthonormal set in
‘H. Then the following statements are equivalent:

[1] S is complete in H; i.e., S+ = {0}.
[2] linS = H; i.e., the linear span of S is norm-dense in H.

[3] (Fourier Series Expansion.) For any x € H, we have

X = {x, xi)x;.

T

~
—_

That is, S is an orthonormal basis for H.

[4] (Parseval’s Identity.) For all x, y € H,

o0
Z X, X))y, xk).

k=1

[5] Forany x € H,

2
<11 = Z| X, xg)]
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Proof. “[1] <= [2]”. This equivalence was proved in Proposition 3.4.6[2].
n

“I11=1[3]". Let x € Hand s, = Z(x, x;)x;. Then for all n > m,
i=1

n
E xx,

i=m+1

(K _Sm”2 =

2 2
= 3 el <

m+1

Thus, (s,) is a Cauchy sequence in H. Since H is complete, this sequence converges to some element
o0 o0

which we denote by Z(x, X;)x;. We show that x = Z(x, x;)x;. Indeed, for each fixed j € N,

i=1

i=1

<x —Z(x,x,-)x,-,xj>

i=1

n
<x— lim E (x, x,)x,,x]>
n—>00

i=1

n
= nlggo <x — Z(x, Xi)Xi, xj>

i=1

= lim ((x, Xj) — Z(x, xi) (i, xj))
i=1

= lim ({x,x;) — (x,x;)) = 0.

n—00

o0
Thus, by [1 Z (x, x;)x; = 0, whence

9]
Exx,

“[3] = [4]”. Let x, y € H. Then

(x,y) = nli)rgo<2(x,xi)xi,2(y,xj)xj>

i=1 j=1

= nlggoz Z(x,x,-)(y,xj)(xi,x]')

i=1j=1
o0
E x, xi){(y, xi).

n
= nlizgoZ(x’xi)(yvxl
i=1

“[4] = [5]”. Take x = y in [4].
“[5] = [1]”. Since ||x||*> = Z(x,xk)(x,xk), if x L S then (x,x;) = 0 for all k. Thus, ||x||> = 0,
whence x = 0. Thatis, S+ = {0} |

3.5.6 Examples

[1] In£,, the set S = {e, : n € N}, where ¢, = (811, 621, .. .) With
5 = 1 ifi=j
v 0 otherwise
is an orthonormal basis for £5. [ ]
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[2] In Ly[—m, 7], the set { e ineZ } is an orthonormal basis for the complex L,[—mn, x].

1
2w
1 cosnt sinnt

Vo m T ow
Hence, if x € Ly[—n, 7], then by Theorem 3.5.4[3],

1 1 > cosnt\ cosnt sin nt\ sinnt
= o) £ o

1 N[ 1 1 , ,
= (x(@), 1)+ Z —(x(),cosnt)cos nt + —(x(¢), sin nt)sinnt
2 o b4

T
lf(l)dl
= — X
2

+Z |: ( /x(l)cos nt dl) cos nt + (%/x(l) sin nt dl) sinntj|

-7 -7

[3] The set S = { } is an orthonormal basis for the real L;[—mn, 7.

— %

o0
= qa¢+ Z(an cosnt + by, sinnt),

n=1
where
ay = T(x(t) >— = [" x() dt,
an :ﬁ( @), "‘:}l’>— L /* x(t)ycosntdr, and n=12,....

by = f<x(l) ““”’>— %ffnx(t)sinnt dt

That is, the Fourier series expansion of x is

x(t) = a0+ Y_(ancosnt + bysinnt). (3.5.6.1)

n=1

Itis clear from above thatforalln =1,2, ...,

2

2
271 ao|? = <x(l), %> 7 |an|? = Kx(l), C(j_’”> . and
T T
2 sin nt\|?
7 (6| _Kx(t)’ ﬁ>
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By Theorem 3.5.4 [5] we have that

2

/|x<z>|2dr = IxJ?

o 5

> cos nt
" I(K’C“” ﬁ>

n=

)

oot

o0
= 2xlaol + Y (rlanl® + 7 1bal?)

n=1

= = (2|a0|2 + 3 (anl® + |b,,|2>) :

n=1

We now apply the above results to a particular function: Let x(¢) = ¢. Then

1 . . .
ag = Z—/tdtzo since x(¢) =t is an odd function.
T
—TT
1 T
Forn=1,2,..., a, = —/tcosntdtzo since t cosnt is an odd function,
T
1 T
b, = —/tsmntdl /tsmntdt
T
- T
2 | —tcosnt 1/
= —| ———| 4+ — [ cosntdt
V4 n o N
0
2 -7 2(=1)nt!
= —[—COSHJT] = -
T n n

Hence, by Theorem 3.5.4[3],

- —1)ntt it _1\nt+1 .

n=1 n=1

It now follows that

2=t ym <t sinnt>

n Jr
Now,
[ [ 2.7 2md
||x||§=/t2dt=2/tzdt=_t3 _w?
3 1o 3
i .

Also, by Theorem 3.5.4[5],

o0
2
NEEDY

n=1

2(1

=)

56

2

n=1



2011 FUNCTIONAL ANALYSIS

Thus,
2

21
s

We can express the Fourier Series Expansion (3.5.6.1) of x € Lj[—m, 7] in exponential form. Recall

that .
e = cosf +isinf (Euler’s Formula).
Therefore " " » »
i —i i0 _ ,—i
cosf = e te and sinf = i
2 2i
Equation (3.5.6.1) now becomes
o0
x() = ao+ Z(an cosnt + by, sinnt)

n=1

lnt +€ int eint _e—int
w2 (T e ()]
an—i n int an+ibn —int
O s Ry )
e ()

—ib,,) int > (an+ibn) —int
= e +Z e,
2 o 2

I I
8 8
- -
= =
1Me 1M
—~ —
£ T s

(3.5.6.2)

Foreachn =1, 2, 3, ..., letc, = %(an +ib,). Then ¢, = %(an—ibn) foreachn =1, 2, 3, ..., and

so equation (3.5.6.2) becomes

o0 o0
x(t) = ao + E he'™ + E cpe M,
n=1 n=1

Re-index the first sum in (3.5.6.3) by letting n = —k. Then

oo

—00
x(t) = ao + Z Tre k4 che_i”’.

k=—1 n=1

Forn = —1, =2, =3, ... , define

Cn = C_p

and let ¢ = ao. The we can rewrite equation (3.5.6.4) as

o0
x(t) = Z cpe M
—00

This is the complex exponential form of the Fourier Series of x € Ly[—m, ).

Note that,

1 T
Co=dag = — / x(t)dt
2
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andforn =1, 2, 3, ...,
s s
1 , 1] 1 1 .
tn = =(an+iby)==|— | x(@)cosntdt +i— | x(¢t)sinnt dt
2 2| T
—7T —7T

g
1
= —/x(t)(cosnt+isinnt) dt
2
-

1 T
= —/x(t)ei”’ dt,
2
—TT

and

1 ¢ 1 r - 1 H
Cepy = a = — / x(l)e—i”’ dt = — / X(l)e_i”t dt = — / X(l)eim dt.
2 2 2
- - -
Therefore, for all n € Z,
T
1 )
= — / x(t)e'™ dt.
2
—TT

Now, forn =1, 2, 3, ...,

_ 1 . 1 )
|Cn|2 = Cn'cn:E(an+lbn)'5(an—lbn)
1 1
= 2 (e +02) = (laal* +18aP).
Therefore

o0 1 o0

> lenl* = 1 > (Ianl2 + Ibnlz) . (3.5.6.6)
n=1 n=1

Since forn =1, 2, 3, ..., c—, = ¢y, it follows that

lconl® = Con Con = G- Cn = Cn - n = e

Hence, forn =1, 2, 3, ...,

o o0 o0

D leenl? =) lenl? = lZ lan)? + 1bal?) . (3.5.6.7)
4

n=1 n=1 n=1

From (3.5.6.6) and (3.5.6.7), we have that

o0 o0
el = D leal +lcol + D leal
n=1 n=1

nez
1 w— 1 w—
= 22 (lanl® + 18al?) +laol” + 7 D (lal® + 184
n=1 n=1
1 o0
= aof* + 5 Y (Ianl” + Ibal?)
n=1

= ﬁ o (z laol” + 3~ (laal? + |bn|2)>

n=1
- 2 fl )| dt
= 27_[ X .
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That is,
|cn = — / |x(0)|* dt. (3.5.6.8)
nez
Let {xi, X2, ..., X5} be a basis of an n-dimensional linear subspace M of an inner product space
(X, (-, -)). We have seen in Theorem 3.5.2 that if the set {x1, X3, ..., X} is orthonormal, then the orthog-

onal projection (=best approximation) of any x € X onto M is given by

n

Par(x) =) (X, Xp) X

k=1

It is clearly easy to compute orthogonal projections from a linear subspace that has an orthonormal basis:
the coefficients in the orthogonal projection of x € X are just the “Fourier coefficients” of x. If the basis of
M is not orthogonal, it may be advantageous to find an orthonormal basis for M and express the orthogonal
projection as a linear combination of the new orthonormal basis. The process of finding an orthonormal
basis from a given (non-orthonormal) basis is known as the Gram-Schmidt Orthonormalisation Procedure.

3.5.5 Theorem
(Gram-Schmidt Orthonormalisation Procedure). If {x;}{° is a linearly independent set in an inner
product space (X, (-, -)) then there exists an orthonormal set {ey }{° in X such that

lin{x1, x2,...,x,} = lin{ey, ea,...,e,} forall n.

Proof. Set ¢, = ——. Then lin{x;} = lin{e;}. Next, let y, = x» — (X3, ¢1)e1. Then

(y2,€1) = (Xz — (X2,€1)€1,€1) = (X2,€1) — (X2,€1)(€1,€1) = (X2,€1) — (X2,€1) =0.

Thatis,e; L y,. Sete, = . Then {ey, e,} is an orthonormal set with the property that lin{x, x,} =

lin{ey, e>}. In general, for each k=2,3,..., welet

k—1

Vi =Xk — Y _{xk.ei)ei

i=1

Then fork = 2,3, ...

(Vise1) = (v, e2) = (yk,e3) = - = (yk, ex—1) = 0.
Set e, = H Then {ey, ez, ..., e} is an orthonormal set in X with the property that
lin{ey, ez, ..., ex} = lin{xy, x2,..., Xk} [ |

We have made the point that £ is a Hilbert space. In this final part of this chapter we want to show that
every separable infinite-dimensional Hilbert space “looks like” £, in the sense defined below.

3.5.7 Definition
Two linear spaces X and Y over the same field F are said to be isomorphic it there is a one-to-one map T
from X onto Y such that forall x, x, € X and alla, B € F,

T(axy + Bxz) = aT(x1) + BT (x2). (3.5.7.1)
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Remark

Any map that satisfies condition (3.5.7.1) of Definition 3.5.7 is called a linear operator. Chapter 4
is devoted to the study of such maps. Clearly, the linear structures of the two linear spaces X and
Y are preserved under the map 7.

Definition
Let (X, | -|) and (Y, || - ||) be two normed linear spaces and T : X — Y. Then T is called an isometry if

|Tx|| = |x|| forall x € X. (3.5.9.1)

Simply put, an isometry is a map that preserves lengths.

Remark

Itis implicit in the above definition that the norm on the left of equation (3.5.9.1) is in Y and that on
the rightis in X. In order to avoid possible confusion, we should perhaps have labelled the norms
as ||-|ly and || - ||, for the norms in X and Y respectively. This notation is however cumbersome
and will therefore be avoided.

Normed linear spaces that are isometrically isomorphic are essentially identical.

Lemma
Let M = lin{x,} be a linear subspace of X . Then there exists a subsequence {x, } of {x,} which has the
following properties:

() lin{xp, } = M;
(ii) {xn, } is linearly independent.

Proof. We define the subsequence inductively as follows: Let x,, be the first nonzero element of the
sequence {x,}. Therefore x, = 0-x,, forall n < n;. If there is an o € F such that x, = ax,, for all
n > np, then we are done. Otherwise, let x,, be the first element of the sequence {xn}n>nl that is not a
multiple of x,,. Thus there is an « € F such that x, = ax,, + 0x,, foralln < n,y. If x, = ax,, + Bxg,
for some o, B € IF and all n > n, then we are done. Otherwise let x,, be the first element of the sequence
{xn} which is not a linear combination of x,, and x,,. Then x, = ax,, + Bxu, + Ox,, foralln < n3. If
Xn = 0Xp, + BXn, + Xy, forall n > n3, then we are done. Otherwise let x,,, be the first element of the
sequence {x,} that is not in lin{x,, x,,, X», }. Continue in this fashion to obtain elements x,,, Xu,, .. ..

If x € lin{xy, x2, ..., x5}, then x € lin{X,,, Xp,, ..., Xn, } for r sufficiently large. That is lin{x,, } = M.
The subsequence {xp, } is, by its construction, linearly independent. |
Theorem

Every separable Hilbert space 'H has a countable orthonormal basis.

Proof. By Theorem 2.7.1 there is a set {x, | n € N} such that lin{x, | » € N} = H. Using Lemma 3.5.11
extract from {x, | n € N} a linearly independent subsequence {x,, } such that lin{x,} =lin{x,, }. Apply
the Gram-Schmidt Orthonormalisation Procedure to the subsequence {x, } to obtain an orthonormal basis
for H. ]

Theorem
Every separable infinite-dimensional Hilbert space H is isometrically isomorphic to {5 .

Proof. Let {x, | n € N} be an orthonormal basis for H. Define T : H — £, by
Tx = ({x,xn))en foreach x e H.

It follows from Bessel’s Inequality that the right hand side is in £,. We must show that 7" is a surjective
linear isometry. (One-to-oneness follows from isometry.)
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(i) T islinear: Let x, y € H and A € F. Then

T(x + y) ((X + Vs xn))nEN = ((X, Xn) + (yv xn))nEN

= ((X, xn))nEN + ((yv xn))nEN =Tx+ Ty,

and

T()\X) = (()\X, xn))nEN = ()‘ (X, xn))nEN =1 ((X, xn))nEN .

(ii) T is surjective: Let (cn)pey € 2. By the Riesz-Fischer Theorem (Theorem 3.5.3), the series
o0

Z ¢ Xy converges to some x € H. By continuity of the inner product, we have that for each

k=1
jeN,

n
(x,xj) = lim <Z ckxk,xj> = lim ¢; = ¢;.
n—0o0 f—=1 n—0o0

Hence, Tx = ((X, xn))neN = (Cn)nEN‘

(iii) T is an isometry: For each x € H,

ITx113 =" [x.xa)? = [Ix]%

neN

where the second equality follows from the fact that {x,},en is an orthonormal basis and Theo-

rem 3.5.4[5].
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4.1.2

Chapter 4

Bounded Linear Operators and
Functionals

4.1 Introduction

An essential part of functional analysis is the study of continuous linear operators acting on linear spaces.
This is perhaps not surprising since functional analysis arose due to the need to solve differential and
integral equations, and differentiation and integration are well known linear operators. It turns out that it is
advantageous to consider this type of operators in this more abstract way. It should also be mentioned that
in physics, operator means a linear operator from one Hilbert space to another.

Definition
Let X and Y be linear spaces over the same field F. A linear operator from X into Y is a mapping
T : X — Y such that

T(axy + Bxz) =aTxy + BTx;, for all x;,x, € X andalla, B € F.

Simply put, a linear operator between linear spaces is a mapping that preserves the structure of the under-
lying linear space.
We shall denote by L£(X, Y') the set of all linear operators from X into Y. We shall write £(X) for L(X, X).

Exercise
Let X and Y be linear spaces over the same field F. Show that if T is a linear operator from X
into Y, then 7'(0) = 0.

The range of a linear operator 7' : X — Y is the set
ran(T)={yeY |y=Tx forsomex € X} =TX,
and the null space or the kernel of 7" € L(X, Y) is the set
N(T) = ker(T) ={x e X : Tx =0} = T"(0).

IfT € L(X,Y), then ker(T) is a linear subspace of X and ran(7) is a linear subspace of Y.

An operator T € L(X,Y) is one-to-one (or injective) if ker(7') = {0} and onto (or surjective) if
ran(T) = Y. If T € L(X,Y) is one-to-one, then there exists amap 7! : ran(T) — dom(T") which
maps each y € ran(T) onto that x € dom(7") for which Tx = y. In this case we write 7!y = x and
the map 7! is called the inverse of the operator 7 € L(X,Y). An operator T : X — Y is invertible if it
has an inverse 7.

It is easy exercise to show that an invertible operator can have only one inverse.
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Proposition
Let X and Y be linear spaces over F. Suppose that T € L(X,Y) is invertible. Then

(a) T~ is also invertible and (T~')™' = T.
b TT '=IyandT7'T = Iy.
(¢c) T~ is a linear operator.

Proof. We shall leave (a) and (b) as an easy exercise.
(c) Linearity of T7!: Letx, y €Y and A € F. Then

T Yax+y) = T HalT 'x+TT'y) =TTl 'x+Ty)
= T Tl 'x+T'y)=alT 'x+T71y.

Let X and Y be linear spaces over F. For all 7, S € L£(X,Y) and @ € F, define the operations of
addition and scalar multiplication as follows:

(T+S)(x) = Tx+ Sx and
(aT)(x)

Then L£(X, Y) is a linear space over F.

aTx foreach x € X.

The most important class of linear operators is that of bounded linear operators.

Definition
Let X and Y be normed linear spaces over the same field F. A linear operator T : X — Y is said to be
bounded if there exists a constant M > 0 such that

ITx|| < M|x| forall xeX.

(It should be emphasised that the norm on the left side is in Y and that on the right side is in X .)
Anoperator T : X — Y is said to be continuous at xo € X if given any € > 0 there is aé > 0 such that

|Tx — Txo| <€ whenever || x — xo| <.
T is continuous on X if it is continuous at each point of X .

We shall denote by B(X, Y') the set of all bounded linear operators from X into Y. We shall write B(X)
for B(X, X).

Definition
Let X and Y be normed linear spaces over the same field F and let T € B(X, Y). The operator norm (or
simply norm) of T', denoted by ||T'||, is defined as

1T =inf{M : |Tx|| < M|x|, forall x e X}.
Since T is bounded, || 7| < oco. Furthermore,

ITx|| < | T|lx]| for all x e X.

Theorem
Let X and Y be normed linear spaces over a field IF and let T € B(X,Y). Then

I7x]|
1T = Sup{w cx # 0 =sup{[|T'x]| : [|x]| = 1} = sup{ | Tx ] : [[x]| < 1}.
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17x] .

1

Proof. Let o = sup{ x # 0}, B=sup{||Tx| :|x|=1}, and y = sup{||Tx]| : [|x] <

T

1}. We first show that |T'| = «. Now, for all x € X \ {0} we have that ”” )T|” < o, and therefore
x

ITx|| < aflx|. By definition of | T|| we have that |7'] < «. On the other hand, for all x € X,
I7x]

we have that |[Tx| < ||T|/|x|. In particular, for all x € X \ {0}, < ||T||, and therefore

Tl [l
oc—sup{ il 750}5 |T|. Thus, ¢ = ||T].

Next, we show that o = B = y. Now, foreach x € X

{”Tx“ 750} {H (L)H;x;éo}c{nTxn:||x||=1}c{||Tx||:||x||51}.

[l [l
Thus,
17|
o= Sup{ il x# 00 < B =sup{[|Tx|: x| =1} <y =sup{l|Tx| : ]| < 1}.
But for all x # 0
I7x]
W <a = |Tx||<«a|x||<a forall x such that ||x| < 1.
X
Therefore,
y =sup{||Tx| : [[x]| =1} <c.
Thatis,a < 8 <y <o«.Hence,a = = y. [ |
Theorem
Let X and Y be normed linear spaces over a field F. Then the function | - || defined above is a norm on
B(X,Y).

Proof. Properties N1 and N2 of a norm are easy to verify. We prove N3 and N4. Let 7" € B(X, Y) and
a el

N3. [laT'|| = sup{llaTx| : llx]| = 1} = e sup{[[ Tx| = [[x]| = 1} = [e][| T’

N4.Let T, S € B(X,Y). Then for each x € X,

T+ S = [1Tx + Sx|| < ITx[| + [Sx]l < (TN + IS DIl

Thus, [T + S|l < IT] + IS]. u
Examples
[1] Let X = F" with the uniform norm || - || e FOr x = (x1, x2, ..., x,) € F", define
T :F" — F" by

n n n
TXZT(X1,)C2,...,X,,)= E o1 Xj, E 02jXj, .., E OpjXj
j=1 j=1 j=1

It is easy to show that T is a linear operator on X. We show that 7" is bounded.

ITx|loo = sup Za,]x] < sup Z|oc,]||x]

1<i<n =1 1<1<n

IA

sup Z|au| sup x| = M [|x oo,

1<l<n] 1 1<j<n
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n
where M = sup Z la;j|. Hence, |T|| < M.

1<i<n .
== ]=1
We claim that ||T|| = M. We need to show that ||Tx|. > M| x|s- To that end, choose
n n

an index k such that Z logj| = M = sup Z loe;;| and let x be the unit vector whose j-th

j=1 15i§n]-=1

. Then

Oékj

|05kj|

component is

n n n
ITx||oo = sup Z(xijxj > Z(xijj = Z logj| = M || x| oo-
1 j=1 j=1

1<i<n |’
<i=n|;_

n
Thus [T = sup Y lejl. [

15i§n]-=1

[2] Let {x, | n € N} be an orthonormal set in a Hilbert space H. For (1;){2, € {, define
T :H— Hby

o0
Tx = Zki(x, Xi)Xi.
i=1

Then T is a bounded linear operator on H. Linearity is an immediate consequence of the
inner product.

Boundedness:

o0

Z )\i ()C, x,-)x,-

i=1

1712

2 o0
= > e, xa) Pl 2
i=1

IA

o0
M2 |{x.x;)>, where M = sup |i;]
i1 ieN

IA

M?|x||*> by Bessel's Inequality.

Thus, | Tx| < M||x|, and consequently | T|| < M.

We show that | 7'|| = sup |A;|. Indeed, for any € > 0, there exists A, such that |A;| > M —e.
ieN
Hence,
ITN = 1T xkll = lAkxicl = Al > M — €.
Since ¢ is arbitrary, we have that | T|| > M. [ |

[3] Define an operator L : £, — £, by
Lx = L((x1,x2,x3,...)) = (x2,Xx3,...).

The L is a bounded linear operator on £,.
Linearity: Easy.
Boundedness: For all x = (x1, x2, x3,...) € £3,

o0 o0
2 2 2 2
ILx3 ="l < Y il = [lx]13.
i=2 i=1
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That is, L is a bounded linear operator and ||L| < 1. We show that |L| = 1. To that end,
consider e; = (0,1,0,0,...) € £,. Then

lealo =1 and Le; =(1,0,0,...) whichimpliesthat |Le;|, = 1.
Thus, | L|| = 1. The operator L is called the left-shift operator. |

[4] Let BC[0, o0) be the linear space of all bounded continuous functions on the interval [0, co)
with the uniform norm || - |- Define T : BC[0, co) — BC[0, co) by

t

(Tx)(t) = %/X(t)dt.

0

Then T is a bounded linear operator on 3C[0, co).
Linearity: For all x, y € BC[0,00) and all &, B € T,

(T(ax+ By) (1) = %/(x +y)(r)dt =« (%/x(t)dt) + B8 (%
0 0

Boundedness: For each x € BCJ0, c0),

ot

y(t)dt) .

t

1
ITxloe = supl(T0)0)] =sup | [ x(0)de
0

t t
1 1
sup [ Iv(ode < (sup;/dr) Ixlleo = Il
t t
0

0

IA

[5] Let M be a closed subspace of a normed linear space X and Q,, : X — X/M the qgoutient
map. Then Q,, is bounded and ||Q,, || = 1. Indeed, since | Q,,(x)|| =[x + M || < ||x], O,
is bounded and ||Q,,|| < 1. But since Q,, maps the open unit ball in X onto the open unit
ball in X/ M, it follows that | Q,, || = 1.

[6] Let X = mathcal P[0, 1] - the set of polynomials on the interval [0, 1] with the uniform norm
[x]lco = max |x(z)|. For each x € X, define T : X — X by
o<r<l1

d . . .
Tx =x'(t) = d—); (differentiation with respect to 7).

Linearity: For x,y e X and all «, B € I,
T(ax + By) = (@x + By) () = ax'(t) + By'(t) = aTx + BTy.
T is not bounded: Let x,(t) = t", n € N. Then

ITxall _

¢

[xall = 1, Txp=x,() =nt"', and |Txa| =

Hence T is unbounded. [ |

4.1.3 Theorem
Let X and Y be normed linear spaces over a field F. Then T € L(X,Y) is bounded if and only if T maps
a bounded set into a bounded set.
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Proof. Assume that 7" is bounded. That is, there exists a constant M > 0 such that | Tx| < M ||x|| for all
x € X. If || x| < k for some constant k, then | Tx| < M ||x|| < kM. That is, T maps a bounded set into
a bounded set.

Now assume that 7" maps a bounded set into a bounded set. Then 7" maps the unitball B = {x € X :
x|l < 1} into a bounded set. That is, there exists a constant M > 0 such that ||Tx| < M for all x € B.

Therefore, for any nonzero x € X,
ITx| x
=\T— ||| <M.
x| x|

Hence, ||Tx| < M| x||. That is, T" is bounded. |

Exercise
Show that the inverse of a bounded linear operator is not necessarily bounded.

Proposition
Let T € B(X,Y). Then T~ exists and is bounded if and only if there is a constant K > 0 such that

ITx| > K|x|| forall x € X.

Proof. Assume that there is a constant K > 0 such that || Tx| > K|x|| forall x € X. If x # 0, then
Tx # 0and so T is one-to-one and hence 7! exists. Also, given y € ran(T), let y = Tx for some
x € X. Then

1 1
Ty =T (Tx)| = |x|| < =|Tx|| = =|»l.
1Tl = I1T"(Tx)|| = llx[| KII | Kllyll
ie, |T 1y < %||y|| forall y € Y. Thus 7! is bounded.
Assume that 77! exists and is bounded. Then for each x € X,

Il = 177" Tl < IT7' x| <= IxI = ITxl <= Klx|l < Tx].

1
171

where K = |

S
="y

The following theorem asserts that continuity and boundedness are equivalent concepts for linear oper-
ators.

Theorem
Let X and Y be normed linear spaces over a field F and T € L(X,Y). The following statements are
equivalent:

(1) T is continuouson X ;
(2) T is continuous at some point in X ;

(3) T isboundedon X .

Proof. The implication (1) = (2) is obvious.
(2) = (3): Assume that 7" is continuous at x € X, but 7" is not bounded on X . Then there is a sequence
(xp) in X such that || 7' x,|| > n| x| foreach n € N. For each n € N, let

Xn
Yn = =+ X.
1| xnl
Then
lyvn— x| = p — 0Oas n — o0;
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. n—o0o
ie., yp — X, but

17 x| n||xaq|l _
> =
n|| x| nl|xq|

ITyn—Tx| =

That is, Ty, 4 T x as n — 0o, contradicting (2).
(3) = (1): Assume that 7" is bounded on X. Let (x,) be a sequence in X which converges to x € X.
Then
ITxn = Tx|| = 1T Cen =) = IT[lxn —x]| -0 as n — oc.

Thus, T is continuous on X . |
Theorem
Let (X, - ||) and (Y,| - ||) be normed linear spaces with dim(X) < oo and T : X — Y be a linear

operator. Then T is continuous. That is, every linear operator on a finite-dimensional normed linear space
is automatically continuous.

Proof. Define a new norm || - [|o on X by
Ix]lo = lIx|| + [|Tx]|| forallx e X.

Since X is finte-dimensional, the norms || - ||o and || - || on X are equivalent. Hence there are constants o
and B such that
afxllo < [lx] < Blixllo forall x € X.

Hence,
1
I1Tx] < [xllo < EIIXII = K||x]|,
where K = é Therefore T is bounded. |
Definition

Let X and Y be normed linear spaces over a field F.

(1) A sequence (T,)° in B(X,Y) is said to be uniformly operator convergent to 7" if
lim |7, —T| = 0.
n—0o0

This is also referred to as convergence in the uniform topology or convergence in the operator
norm topology of B(X,Y). In this case T is called the uniform operator limit of the sequence
(T3

(2) A sequence (T,)° in B(X,Y) is said to be strongly operator convergent to T if

lim |Tyx — Tx|| =0 foreachx € X.
n—0o0

In this case T is called the strong operator limit of the sequence (T;,)°.

Of course, if T is the uniform operator limit of the sequence (7,)7° C B(X,Y), then T € B(X,Y).
On the other hand, the strong operator limit 7" of a sequence (7,)7° C B(X,Y) need not be bounded in
general.

The following proposition asserts that uniform convergence implies strong convergence.
Proposition

If the sequence (T,)$° in B(X, Y) is uniformly convergent to T € B(X,Y), then it is strongly convergent
toT.
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Proof. Since, foreach x € X, ||Tyx — Tx|| = (T = T)X)|| < | Tw — T|Ix|,if |Tn —=T|| — 0 as
n — oo, then
Ty —T)x)] — 0 as n— oo.

The converse of Proposition 4.1.10 does not hold.

Example
Consider the sequence (T},) of operators, where for each n € N,
Tu : Ly — €, is given by

Tu(x1,%x2,...) =1(0,0,...,0, Xp41,Xng2,...).

Let € > 0 be given. Then for each x = (x;)2, € ¢», there exists N such that

i=1

o0
> lxil* <€, forall n> N.
n+1

Hence, foralln > N,
o0
ITux (3 =) Ixil* < €.
n+1

That is, for each x € ¢, T,x — 0. Hence, T,, — 0 strongly.
Now, since

o0 o0
T3 =D il <Y Jxil® = [1x[13
n+1 1
forn e Nand x = (x;)%°, € {5, it follows that | 7,|| < 1 foreach n € N.

i=1

But | T,|| > 1 for all n. To see this, take x = (0,0,...,0,x,+1,0,...) € £, where x,+; # 0.
Then
T,x =x andhence |T,x|>= |xnt1|, and consequently, |T,| > 1.

That is, (7)) does not converge to zero in the uniform topology. |

Theorem
Let X and Y be normed linear spaces over a field F. Then B(X,Y) is a Banach space if Y is a Banach
space.

Proof. We have shown that B(X, Y) is a normed linear space. It remains to show that it is complete if ¥’
is complete. To that end, let (7},)7° be a Cauchy sequence in B(X, Y'). Then given any € > 0 there exists a
positive integer N such that

|Tw — Tysr|| <€ forallm > N,

whence,
1 Tux — Tytr X || < 1 Tn — Tutr ||l x|l < €llx|| forall x € X. (4.1.6.1)

Hence, (T, x){° is a Cauchy sequence in Y. Since Y is complete there exists y € Y such that T,,x — y
asn — 00. Set Tx = y. Weshowthat T € B(X,Y)and T, - T. Let x;,x, € X, and @, 8 € F. Then

T(axi + Bxz) = Jim Tu(axy + Bxz) = JL“;O[“TM + BTux2]
= «a lim Tyx;+ B lim Tyx, = aTxy + BT x;.
n—>00 n—0o0
That is, T € L(X, Y). Taking the limit as r — oo in (4.1.6.1) we get that

I(Tn — T)x|| = ||Tux — Tx|| <€|x| forallm > N, andall x € X.
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That is, T, — T is a bounded operator for all #» > N. Since B(X, Y) is a linear space,
T=T,—(T,—T) e B(X,Y).
Finally,
|Tw — T\ = sup{||Tux — Tx| :||x]| <1} <sup{||x|le:|x]| <1} <e forall n> N.

Thatis, 7,, — T as n — oo. |

Definition
LetT : X - Y and S : Y — Z. We define the composition of 7 and S as the map ST : X — Z
defined by

ST)x) = (S oT)(x)=S(Tx).

Theorem
Let X, Y and Z be normed linear spaces over a field F and let T € B(X,Y) and S € B(Y, Z). Then
ST € B(X,Z) and |ST|| < | SIIT]-

Proof. Since linearity is trivial, we only prove boundedness of S7'. Let x € X. Then
IST)YON = IST o)l < ISINT x| < [STIT -

Thus, |ST| < [[S|IIT]. u

Let X be a normed linear space over IF. For S, T, T, € B(X) it is easy to show that

(ST)T, = S(ThT»)
S(+T,) = ST+ ST,
(Th+T1T2)S = T1S+T1S.

The operator [ defined by /x = x for all x € X belongs to B(X), | /|| =1, and it has the property that
IT =TI =T forall T € B(X). Wecall I the identity operator. The set B(X) is therefore an algebra
with an identity element. In fact, B(X) is a normed algebra with an identity element. If X is a Banach
space then B(X) is a Banach algebra.

We now turn our attention to a very special and important class of bounded linear operators, namely,
bounded linear functionals.

Definition
Let X be a linear space over F. A linear operator f : X — F is called a linear functional on X . Of course,
L(X,T) denotes the set of all linear functionals on X .

Since every linear functional is a linear operator, all of the foregoing discussion on linear operators
applies equally well to linear functionals. For example, if X is a normed linear space then we say that
f € L(X,TF) is bounded if there exists a constant M > 0 such that | f(x)| < M| x| forall x € X. The
norm of f is defined by

I/1l = sup{l (ol = llxll < 13

We shall denote by X* = B(X, F) the set of all bounded (i.e., continuous) linear functionals on X. We
call X* the dual of X. It follows from Theorem 4.1.6 that X* is always a Banach space under the above
norm.
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4.1.14 Examples
[1] Let X = ([a, b]. For each x € X, define f : X — R by

b

f(x) = /x(t)dt.

a

Then f is a bounded linear functional on X.
Linearity: Forany x, y € X and any «, § € R,

b b

b
flax + By) = / (@x + By)(0)dt = / x(0)dt + / YOt = af () + BSO).

a

Boundedness:

b

/x(t)dt

a

b

/0] = < [ xwlde = max 16 -0 = [x]..6 - .

Hence f isbounded and || f|| < b —a. We show that || /|| = b —a. Take x = 1, the constant
function 1. Then

b
f(l):/dt:b—a, e, /()] =b—a.

Hence

b—azwfsup{MZX#0}=||f||§b—a.
I ]

Thatis, || f|| = b —a. [ |
[2] Let X = Cla,b] and let ¢ € (a, b) be fixed. For each x € X, define §; : X — R by
8;(x) = x(t), (i.e., é;is a point evaluation at ¢).

Then §; is a bounded linear functional on X . Linearity of §, is easy to verify.
Boundedness: For each x € X,

5] = @] < max [x(@)] = l¥]..

That is, §, is a bounded linear operator and ||§;|| < 1. We show that ||§;|| = 1. Take x = 1,
the constant 1 function. Then é,(1) = 1 and so

|8:(D)|
1

That s, [|8] = 1. [ |

1=

<sup {|8:(x)[ : [lx]l =1} = [I1d:[| = 1.

[3] Let ey, ca,...,c, be real numbers and let X = Cla, b]. Define f: X — R by
f) =) ax@), where t,t2,....t, arein [a,b].
i=1
Then f is a bounded linear functional on X.
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Linearity: Clear.
Boundedness: For any x € X,

> eix(t)
i=1

Hence, f is bounded and

/()] =

n n n
<D lex@) =Y lellx @) < llxlloo Y leil-
i=1 i=1 i=1

n

T 0

i=1

[4] Let X be a linear space. The norm || - || : X — R is an example of a nonlinear functional on
X.

4.2 Examples of Dual Spaces

Definition

Let X and Y be normed linear spaces over the same field F. Then X and Y are said to be isomorphic to
each other, denoted by X ~ Y, if there is a bijective linear operator T from X onto Y. If, in addition, T is
an isometry, i.e., |Tx|| = | x|| for each x € X, then we say that T is an isometric isomorphism. In this
case, X and Y are are said to be isometrically isomorphic and we write X = Y.

Two normed linear spaces which are isometrically isomorphic can be regarded as identical, the isometry
merely amounting to a relabelling of the elements.

Proposition
Let X and Y be normed linear spaces over the same field F and T a linear operator from X onto Y. Then
T is an isometry if and only if

(i) T is one-to-one;
(ii) T is continuouson X ;
(iii) T has a continuous inverse (in fact, | T~!|| = | T|| = 1);
(iv) T is distance-preserving: Forallx,y € X, |[Tx —Ty| = ||x — y|.

Proof. If T satisfies (iv), then, taking y = 0, we have that ||Tx|| = ||x| for each x € X;ie., T is an
isometry.
Conversely, assume that 7 is an isometry. If x # y, then

ITx =Tyl =T —=pl = llx =yl > 0.

Hence, T'x # Ty. This shows that T is one-to-one and distance-preserving. Since |7 x|| = || x| for each
x € X, it follows that T is bounded and || T'|| = 1. By Theorem 4.1.4, T is continuous on X .
Let y1, y» € Y and ¢4, oy € F. Then there exist x;, x> € X such that Tx; = y; fori = 1, 2. Therefore

aryr+ary, = ogTx; +a2Tx; =T(eyx1 + axxy) or

T ' a1y +02y2) = arxi+aaxa=a1T 'y + T 'y,
That is, 77! is linear. Furthermore, for yeY,letx = T_ly. Then,
1Tyl = lxll = 1Tx] = [yl
Therefore 7! is bounded and || 77| = 1. |
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4.2.3 Remark
It is clear from Proposition 4.2.2 that two normed linear spaces X and Y are isometrically isomor-
phic if and only if there is a linear isometry from X onto Y.
[1] The dual of ¢ is (isometrically isomorphic to) {oo; i.€., {7 = {oo.

Proof. Let y = (yn) € oo and define @ : £oo — €] by

(@y)(x) = Y xjy; for x = (xs) € L1
j=1

Claim 1: ®y € (7.
Linearity of ®y: Let x = (x,), z = (z5) € £; and ¢ € F. Then

o0

o0 o0
(axj +zj)yj = Zax]-yj + szyj
=1 j=1 j=1

(®y)(ax + 2)
J

o0 o0
= a)y Xyt Y 5y
j=1 j=1

= a(@y)(x) + (Py)(2).

Boundedness of ®y: For any x = (x,) € {1,

o0 o0 o0
(@0 =D x| < D iyl < Ivllee Y 1l = Iyl llxll,-
j=1 j=1 j=1
That is, @y € £] and
12y < [17]lo (*)

Claim 2:  is a surjective linear isometry.
(i) @ is a surjective: A basis for £ is (e, ), where e,, = (8,1,) has 1 in the n-th position and zeroes
o0

elsewhere. Let f/ € {] and x = (x,) € £;. Then x = Z Xpey and therefore

n=1

S(x) = anf(en) = anzna
n=1 n=1

where, for each n € N, z, = f(e,). We show that z = (z;,) € {. Indeed, for each n € N

|2n| = 1/ (en)] = 1/ Menll = 1/1.

Hence, z = (z,) € {oo. Also, forany x = (x,) € {4,

@)(x) = Y xuzn = 3 xuf(en) = [ ().
n=1

n=1

That is, ®z = f and so @ is surjective. Furthermore,

Izlloo = sup |za| = sup | f(en)| < || /]| = [ Pz]|. (x%)
neN neN
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(ii) P islinear: Let y = (yp),z = (zn) € £, and B € F. Then, for any x = (x,) € {4,

[@By +2](x) = Y xiByi+z) =B xXjyi+ Y xjz
Jj=1 j=1 j=1
= B(®Y)(x) + (P2)(x) = [BDy + Dz](x).

Hence, ®(By + z) = BDy + D, which proves linearity of ©.

(iii) & is an isometry: This follows from (x) and (*x*). (I

[2] The dual of ¢y is (isometrically isomorphic to) {1, i.e., c§ = {.

Proof. Let y = (y») € ¢; and define ® : £{; — ¢ by

00
(®y)(x) = ijyj for x = (xp) € co.
j=1
Proceeding as in Example 1 above, one shows that ®y is a bounded linear functional on ¢ and
oyl <1yl - ()
Claim: @ is a surjective linear isometry.
(i) @ is a surjective: A basis for ¢ is (e,), where ¢, = (8,,) has 1 in the n-th position and zeroes
00

elsewhere. Let f € c(’;‘ and x = (x,) € ¢o. Then x = Z Xpen and therefore
n=1

S(x) = anf(en) = anwna
n=1 n=1

where, for each n € N, w, = f(ey). Forn, k € N, let

M ifwgy #0and k <n
k=14 Uk
0 ifwgy =0o0rk > n,
and let
Zn = (Zn1s Zn2s -+-» Znn, 0, 0, ...).
Then z,, € ¢y and
Iznllce = sup |zax| = 1.

keN

Also,
o0 n
f@n) = zmewi = Y Jwgl.
k=1 k=1

Hence, for each n € N,

Y lwel =[£G < 1/ Mzall < 111
k=1
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o0

Since the right hand side is independent of #, it follows that Z |lwg| < || f|| Hence, w =
k=1

(wy) € £;. Also, for any x = (x,) € co,

o0 o0
(Pw)(x) = Y xpwn = Y xuf(en) = [ ().
n=1 n=1
That is, dw = f and so & is surjective. Furthermore,
o0
lwll, = Y lwel < 11/1l = | Pwl. (x%)

k=1

(ii) @ islinear: Let y = (yn),z = (z4) € £, and B € F. Then, for any x = (x,) € co,

[@By +2](x) = Y xjByj+z) =B xXjyi+ D xiz
Jj=1 j=1 j=1
= B(O))(x) + (D2)(x) = [BDy + Dz](x).

Hence, ®(By + z) = BDy + Dz, which proves linearity of ®.
(iii) & is an isometry: This follows from (x) and (*x*). O
[3] Let1 < p < o0, % + é = 1. Then the dual of £, is (isometrically isomorphic to) {4, i.e., 6; =4,

Proof. Let y = (yn) € {4 and define @ : {5 — £}, by

(Py)(x) = ijyj for x = (x,) € {p.
j=1

It is straightforward to show that ®y is linear. We show that ®y is bounded. By Holder’s Inequality,

q

o0 o0 o0 F o0
@) =D x| <D bl < D] [ | = lxlblyl,.
j=1 j=1 j=1 j=1
That is, @y € {3 and
1Oyl < [1¥lg- (%)

Claim: @ is a surjective linear isometry.

(i) @ is asurjective: A basis for £, is (e,), where e, = (8,») has 1 in the n-th position and zeroes

o0
elsewhere. Let f € 6; and x = (x,) € {,. Then x = Z Xpey and therefore

n=1

S(x) = anf(en) = anwna
n=1 n=1

where, for each n € N, w, = f(ey). Forn, k € N, let

q
il ifk <mandwy #0
Znk = Wk
0 ifwg =0o0rk > n,
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and let
in = (ana Zn2s -y Znn, 0,0, ..0).

Then z, € £, and
o0 n
f@n) =D zmewi = Y Jweld.
k=1 k=1

Hence, for each n € N,

> wel? =1/Gl < 1 Mzallp-

k=1

0 1/p n 1/p
lzallp = (DznkV’) =(Z|znk|">
k=1 k=1
n 1/p n 1/p
= (Z|wk|p(q_1)> =(Z|wk|q) :
k=1 k=1

it follows that , foreach n € N,

n n n 1/P
Dl < Mzall, <= D lwel? < |11 (Z |wk|q)
k=1 k=1 k=1

Since

n 1—1/1J
= (Z |wk|q) <17l
k=1
n 1/q
= (Z |wk|q) </l
k=1

00 1/q
Since the right hand side is independent of n, it follows that (Z |wk|q> < | f], and so
k=1

w = (wy) € £4. Also, for any x = (x,) € £,
@w)x) = 3 xawn = 3 %0 flen) = £().
n=1 n=1

That is, dw = f and so & is surjective. Furthermore,

00 1/q
lwll, = (Z |wk|") < | /1l = [Qw]. (x%)
k=1

(ii) @ islinear: Let y = (yn),z = (2n) € {4 and B € IF. Then, for any x = (x,) € {,,

[@By +2)](x) = Y xjByi+z) =B xjyi+»_ xiz
Jj=1 Jj=1 j=1

= B(®Y)(x) + (P2)(x) = [Py + Pz](x).

Hence, ®(By + z) = BDy + Dz, which proves linearity of ®.
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(iii) & is an isometry: This follows from (x) and (*x*). (I

The following result is an immediate consequence of Theorem 4.1.5.

Theorem
Every linear functional on a finite-dimensional normed linear space is continuous.

Proposition
Let X be a normed linear space over F. If X is finite-dimensional, then X* is also finite-dimensional and
dimX = dimX™*.

Proof. Let {x;, x3, ---, X} be abasis for X. Foreach j =1, 2, ..., n,let x]’." be defined by x]’."(xk) =
8jx for k =1, 2, ..., n. Then each x]’-" is a bounded linear functional on X. We show that {x]’-" | j =
1, 2, ..., n}is abasis for X*. Let x* be an element of X* and define A; = x*(x;) for each j =
1,2,...,n. Thenforanyk =1, 2, ..., n,

D ohixr | ) =D Ak = hie = x*(xp).
j=1

Jj=1
n
Hence x* = Ajx7s ie., {x]’." | j =1, 2, ..., n}spans X*. It remains to show that {x]’." | j =
j=1

n
1, 2, ..., n}islinearly independent. Suppose that Zajx]’-" = 0. Then, foreachk =1, 2, ..., n,
j=1

n n
0= Zozjx]’-" (xx) = Zaj8jk = .
j=1 j=1

Hence {x]’." | j =1, 2, ..., n}isalinearly independent set. |

4.3 The Dual Space of a Hilbert Space

If 'H is a Hilbert space then bounded linear functionals on H assume a particularly simple form.

Let (X, (-,-)) be an inner product space over a field . Choose and fix y € X \ {0}. Define a map
fy 1 X > Fby f,(x) = (x,y). Weclaim that f, is a bounded (= continuous) linear functional on X.
Linearity: Let x1,x; € X and &, 8 € F. Then

Sy(exy + Bx2) = {ax1 + Bx2.y) = a(x1,y) + B(x2, ) = afy(x1) + Bfy(x2).
Boundedness: For any x € X,
|y = [(x. ) = x|yl (by the CBS Inequality).
That is, f, is bounded and || f, || < |/»|. Since

DI _

L=y =I* = = |yl
(hdl

we have that || f; || = ||»]-
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The above observation simply says that each element y in an inner product space (X, (-, -)) determines
a bounded linear functional on X .

The following theorem asserts that if H is a Hilbert space then the converse of this statement is true.
That is, every bounded linear functional on a Hilbert space H is, in fact, determined by some element
yeH.

Theorem
(Riesz-Fréchet Theorem). Let H be a Hilbert space over F. If f : H — T is a bounded linear functional
onH (i.e., f € H*) then there exists one and only one y € H such that

f(x)=(x,y) forall x e H.
Moreover, || /]| =[]

Proof. Existence: If f = 0 then take y = 0. Assume that /' # 0. Let N = {x € H | f(x) = 0}, the
kernel of f. Then N is a closed proper subspace of H. By Corollary 3.4.5 there exists z € N+ \ {0}.
Without loss of generality, ||z|| = 1. Putu = f(x)z — f(z)x. Then

S@) = J(fx)z = f(@)x) = f(x)f(2) = f(2) f(x) =0, ie,ueN.

Thus,
0={(u,z) =(f(x)z = f(D)x,2) = f(x){z.2) = f(O){x,2) = f(x) = f(2)(x.z),

whence, f(x) = f(z){x,z) = (x, f(z)z). Take y = f(z)z. Then f(x) = (x, y).
Uniqueness: Assume that f(x) = (x, y) = (x, yo) for each x € H. Then

0={(x,y)—(x,y0) = (x,y—y0), forall x eH.
In particular, take x = y — yo,
0=(y=yo.y =) =lly=»l> = r-3»=0 = y=y.
Finally, for any x € H,
|/l =[x p) < lixllllyll - (by the CBS Inequality).

That is, || f|| < ||v|. Since

/()]
== = ===l
Ixl
we have that || f|| = || »]| |
Remarks
(a) The element y € ‘H as advertised in Theorem 4.3.1 is called the representer of the functional
f.
(b) The conclusion of Theorem 4.3.1 may fail if (X, (-,-)) is an incomplete inner product space.
Example

Let X be the linear space of polynomials over R with the inner product defined by

1

(x,y) = /X(l)y(l) dr.

0
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Foreach x € X, let f : X — R be defined by
f(x)=x(0), (i.e., f isapointevaluation at 0).

Then f is a bounded linear functional on X. We show that there does not exist an element y € X
such that
f(x)=(x,y) forall x e X.

Assume that such an element exists. Then foreach x € X

1

‘ﬂm=xww=/xmﬂnm.

0
Since for any x € X the functional / maps the polynomial ¢x () onto zero, we have that

1
/lx(l)y(l)dl =0 forallxeX.

0

In particular, with x(¢) = ty(t) we have that

1
/ﬂwmrm=m
0

whence y =0, i.e. y is the zero polynomial. Hence, for all x € X,

f(x)=(x,y) =(x,0) =0.

That is, f is the zero functional, a contradiction since f maps a polynomial with a nonzero con-
stant term to that constant term. (]

Theorem
Let 'H be a Hilbert space.

(a) If'H is a real Hilbert space, then H =~ H*.
(b) If'H is a complex Hilbert space, then H is isometrically embedded onto H*.
Proof. For each y € H, define A : H — H* by
Ay = f,, where f,(x) = (x, y) foreach x € H.
Let y, z € H. Then, for each x € 'H,
y#Fz = () #Fxz) = LH#F L2 = Ay#Az
Hence, A is well defined and one-to-one. Furthermore, since

1Ayl = A0 = 1yl

for each y € ‘H, A is an isometry.

If /€ H*, then by Riesz-Fréchet Theorem (Theorem 4.3.1), there is a unique y, € H such that f(x) =
(x, ;). Hence Ay, = f,ie., A isonto.

The inverse A~! of A is given by

A7l f =y, where f(x) = (x, ) forall x € H.
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Since ||[A™L f|| = ||yl = || f|| foreach f € H*, A~ is bounded (in fact an isometry).
If H is real, then A is linear. Indeed, for all x, y,z € H and all @ € R, then

MA@y +2) (X)) = Sy (¥) = (x.ay +2)
= (x.,ay)+(x,2) = a(x, p) + {x.2)
= (aAy)x) + (A2)(x) = (@Ay + Az) (x).

Hence, A(ay + z) = aAy + Az.
If 'H is complex, then A is conjugate-linear; i.e., A(oy + z) = Ay + Az. |

4.3.3 Exercise

[1] Let X and Y be linear spaces over the same field F and 7' € L(X,Y).

(a) Show that ran(T) is a linear subspace of Y and ker(T) is a linear subspace of X.
(b) T is one-to-one if and only if ker(7T") = {0}.

[2] Let X and Y be normed linear spaces over the same field F. Show that if 7 € B(X, Y) then
ker(T') is a closed linear subspace of X.

[3] Show that the mapping R : £, — £, given by
Rx = R(x1,x2,x3,...) =(0,x1,Xx2,X3,...)

is a bounded linear operator on £, and find its norm. The operator R is called the right-shift
operator.

[4] Fix x € C[—m, 7r]. Define an operator My : Ly[—n, 7] — Ly[—n, 7] by
Myy =xy where (Myxy)(t) =x()y@) forallt e[—m,x].

Show that M, is a bounded linear operator on L,[—n,x]. The operator M, is called a
multiplication operator. The function x is the symbol of M,,.

[5] Fix x = (x1,x2,...) € £e. Define an operator M, : £, — £, by

Myy = Mx(y1, y2,...) = (x1y1, X2)2,...).
Show that M, is a bounded linear operator on £, and || Mx| = [|x || co-

[6] Show thatif S is a subset of a Hilbert space H thatis dense in 7 and 7 and 7, are operators
such that T'x = Thx forall x € S, then Ty = T>.

[7] Find the general form of a bounded linear functional on L[, 7].
[8] Find the general form of a bounded linear functional on ¢,.

[9] Define f : ¢, — Cby

oo

f(x) = Zx—'z’ where x = (x1,x2,...) € {5
n

n=1
2

T
3/10

Show that /" is a bounded linear functional on ¢, and that || /|| =
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5.1.3

Chapter 5

The Hahn-Banach Theorem and its
Consequences

The Hahn-Banach theorem is one of the most important results in functional analysis since it is required
for many other results and also because it encapsulates the spirit of analysis. The theorem was proved
independently by Hahn in 1927 and by Banach in 1929 although Helly proved a less general version much
earlier in 1912. Intersetingly, the complex version was proved only in 1938 by Bohnenblust and Sobczyk.
We prove the Hahn-Banach theorem using Zorn’s lemma which is equivalent to the axiom of choice. It
should be noted, however, that the Hahn-Banach is in fact strictly weaker than the axiom of choice. Since
the publication of the original result, there have been many versions published in different settings but that
is beyond the scope of this course.

5.1 Introduction

In this chapter the Hahn-Banach theorem is established along with a few of its many consequences. Before
doing that, we briefly discuss Zorn’s Lemma.

Definition
A binary relation < on a set P is a partial order if it satisfies the following properties: For all x, y, z € P,

(i) < isreflexive: x < x;
(ii) < is antisymmetric: if x < y and y < X, thenx = y;
(iii) < is transitive: if x X yandy < z, then x < z.

A partially ordered set is a pair (P, <), where P is a set < is a partial order on P.

Examples
[1] Let P = R and take < to be <, the usual less than or equal to relation on R.
[2] Let P = P(X) the power set of a set X and take < to be C, the usual set inclusion relation.
[3] Let P = (|0, 1], the space of continuous real-valued functions on the interval [0, 1] and take
< to be the relation < given by f < gifand only if f(x) < g(x) for each x €0, 1].
Definition

Let C be a subset of a partially ordered set (P, <).

(i) Anelementu € P is anupper bound of C if x < u forevery x € C;
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(ii) Anelement m € C is said to be maximal if for any element y € C, the relation m < y implies that
m=y.

Definition

Let (P, <) be a partially ordered set and x, y € P. We say that x and y are comparable if either x < y or
¥ < x. Otherwise, x and y are incomparable.

A partial order < is called a linear order (or a total order) if any two elements of P are comparable. In
this case we say that (P, <) is a linearly ordered (or totally ordered) set. A linearly ordered set is also called
a chain.

Theorem
(Zorn’s Lemma). Let (P, <) be a partially ordered set. If each linearly ordered subset of P has an upper
bound, then P has a maximal element.

Definition

Let M and N be linear subspaces of a linear space X with M C N and let f be a linear functional on M .
A linear functional F on N is called an extension of f to N if F|yr = f;ie., F(x) = f(x) for each
xeM.

Definition
Let X be a linear space. A function p : X — R is called a sublinear functional provided that:

(@) plx+y) = plx)+p(y) forx,yeX;
(i) p(Ax) = Ap(x), A >0.

Observe that any linear functional or any norm on X is a sublinear functional. Also, every positive
scalar multiple of a sublinear functional is again a sublinear functional.

Lemma

Let M be a proper linear subspace of a real linear space X, xo € X\M,and N = {m+axo|me M, a €
R}. Suppose that p : X — R a sublinear functional defined on X, and f a linear functional defined on M
such that f(x) < p(x) forallx € M. Then f can be extended to a linear functional F defined on N such
that F(x) < p(x) forallx € N.

Proof. Since xo & M, it is readily verified that N = M & lin{xo}. Therefore each x € N has a unique
representation of the form x = m + Axo for some unique m € M and A € R. Define a functional F on N
by

F(x) = f(m) + Ac forsomec € R.

This functional F is well defined since each x € N is uniquely determined. Furthermore F is linear and
F(y) = f(y) forall y € M. It remains to show that it is possible to choose a ¢ € R such that for each
X €N,

F(x) = p(x).

Let y1, y2 € M. Since f(y) < p(p) forall y € M, we have that

SO = f(2) = f(r1—y2) p(y1 = y2) = p(y1 + X0 — y2 — Xo)
p(y1 + xo0) + p(—=y2 — xo0)

p(y1 + x0) — f(1).

IATAIA

< —f(2)— p(=y2—x0)

Therefore, for fixed y; € M, the set of real numbers {— f(32) — p(—y2 — x0) | ¥» € M} is bounded above
and hence has the least upper bound. Let

a = sup{—f(y2) — p(=y2 — xo0) | y2 € M}.
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Similarly, for fixed y, € M, the set {p(y1 + xo0) — f(31) | ¥y1 € M} is bounded below. Let

b =inf{p(y1 +x0) — f(y1) | y1 € M }.

Of course, a < b. Hence there is a real number ¢ such that @ < ¢ < b. Therefore

—f() = p(=y —x0) =c = p(y+x0)— f(»)
foreach y € M.
Now, letx = y + Axp € N.If A = 0, then F(x) = f(x) < p(x). If L > 0, then

c=p(+x)=/0/H) ke < p(y+dxo) = /()

S() + Ae < p(y + Axo)
F(x) < p(x).

111

Finally, if A < 0, then

1 1
—fW/A) = p(=y/k—x0) Zc —xf(y) + xp(y+)\xo) <c

J) = p(y +Axo) = —Ac

S) +4e < p(y + Axo)

F(x) = p(x).

We now state our main result. What this theorem essentially states is that there are enough bounded

(continuous) linear functionals for a rich theory and as mentioned before it is used ubiquitously thoughout
functional analysis.

[

Theorem

(Hahn-Banach Extension Theorem for real linear spaces). Let p be a sublinear functional on a real
linear space X and let M be a subspace of X. If f is a linear functional on M such that f(x) < p(x) for
all x € M, then f has an extension F to X such that F(x) < p(x) forallx € X.

Proof. Let F be the set of all pairs (Mg, fo), Where M, is a subspace of X containing M, fo(y) = f(»)
for each y € M, i.e., fy is an extension of f, and f,(x) < p(x) for all x € M,. Clearly, F # @ since
(M, f) e F. Define a partial order on F by:

(MOH fOt) < (Mﬁv fﬁ) — Ma C Mﬁ and fﬁ|Ma = fa‘

Let 7 be a totally ordered subset of F and let

XO = U{Ma | (Mota fa) € T}

Then X is a linear subspace of X since 7 is totally ordered. Define a functional fo : Xo — Rby fo(x) =
Ja(x) for all x € M. Then fp is well-defined, since if x € My N Mg, then x € M, and x € Mpg.
Therefore fo(x) = fo(x)and fo(x) = fp(x). By total ordering of 7, either f, extends fg or vice versa.
Hence fo(x) = fpg(x). Itis clear that fy is a linear extension of f. Furthermore fo(x) < p(x) for all
x € Xo and (Mg, fo) < (Xo, fo) forall (Mg, fy) € T,i.e., (Xo, fo) is an upper bound for 7. By Zorn’s
lemma, F has a maximal element (X;, F)). To complete the proof, it suffices to show that X; = X. If
X1 # X, then choose y € X \ X;. By Lemma 5.1.7, we can extend F' to a linear functional F defined
on X = X; @ lin{y} and extending / such that F(x) < p(x) forall x € X. Thus (X F) e F and
(X1, F) < (X F), which contradicts the maximality of (X, F). ]

Definition
A seminorm p on a (complex) linear space X is a function p : X — R such that for all x, y € X and
A eC,
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(i) p(x) = 0and p(0) = 0;
(i) p(x +y) < p(x) + p(y), and
(iii) p(Ax) = |A|p(x).

5.1.3 Theorem
(Hahn-Banach Extension Theorem for (complex) linear spaces). Let X be a real or complex linear
space, p be a seminorm on X and f a linear functional on a linear subspace M of X such that | f(x)| <
p(x) forall x € M. Then there is a linear functional F on X such that F|p = f and |F(x)| < p(x) for
allx € X.

Proof. Assume first that X is a real linear space. Then, by Theorem 5.1.2, there is an extension F of f
such that F(x) < p(x) forall x € X. Since

—F(x) = F(=x) < p(—x) = p(x) forall x € X,

it follows that —p(x) < F(x) < p(x), or | F(x)| < p(x) forall x € X.

Now assume that X is a complex linear space. Then we may regard X as areal linear space by restricting
the scalar field to R. We denote the resulting real linear space by X, and the real linear subspace by M, .
Write f as f = fi1 + if2, where fi and f> are real linear functionals given by fi(x) = e[ f(x)] and
f2(x) = IJm[ f(x)]. Then f; is a real linear functional of M, and fi(x) < |f(x)| < p(x)forallx € M,.
Hence, by Theorem 5.1.2, f; has a real linear extension F; such that F;(x) < p(x) for all x € X,. Since,

fix)=if(x) <= filix)+if2ix) =ifi(x) = f2(x)
=  fa(x) =—/ilix) and fo(ix) = fi(x),

we can write f(x) = fi(x) —if1(ix). Set
F(x) = Fi(x)—iFi(ix) forallx e X.
Then F is areal linear extension of f and, forall x, y € X,

Fix+y) = Filx+y —iFi(ix+iy)= Fi(x)—iFi(ix) + Fi(y) —iF1(iy)
= F(x)+ F(p).

Forall x € X,
F(ix) = Fi(ix)—iFi(—x) = Fi(ix)+iFi(x) =i(Fi(x) —iFi(ix)) = i F(x).

Ifo =a+ bifora, be R,and x € X, then

F(ax) = F((a + bi)x) = F(ax + bix) = F(ax) + F(bix)
= aF(x)+bF(ix) =aF(x)+ biF(x) = (a + bi)F(x)
= oF(x).

Hence, F is also complex linear. Finally, for x € X, write F(x) = | F(x)|e’. Then, since Re F = F,

|F(x)| = F(x)e ™ = F(xe ) = Fi(xe™%) < p(xe™%) = [e 7| p(x) = p(x). |

Suppose that M is a subspace of a normed linear space X and f is a bounded linear functional on M .
If F is any extension of f to X, then the norm of F is at least as large as || /|| because

I Fll =sup{ |[F(x)| : x € X, [Ix[ =1} = sup{|F(x)|:xe M [x]| =1}
supt [ /()] 1 x € M, [lx|| < 1} = | /1]
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The following consequence of the Hahn-Banach theorem states that it is always possible to find a
bounded extension of f to the whole space which has the same, i.e., smallest possible, norm.

Theorem

(Hahn-Banach Extension Theorem for Normed linear spaces). Let M be a linear subspace of the
normed linear space (X, | - ||) and let f € M*. Then there exists an extension x* € X* of f such that
=171

Proof. Define p on X by p(x) = | f|llx||. Then p is a seminorm on X and | f(x)| < p(x) for all
x € M. By Theorem 5.1.3, f has an extension F to X such that | F(x)| < p(x) for all x € X. That is,
|[F(x)| < || £lllx]l.- This shows that F is bounded and || F|| < || f||. Since F must have norm at least as
large as || f|I, || F|| = || f]| and the result follows

with x* = F. ]

5.2 Consequences of the Hahn-Banach Extension Theorem

Theorem
Let M be a linear subspace of a normed linear space (X, || - ||) and x € X such that

d=d(x,M):= inf ||x —y| > 0.
yeM

Then there is an x* € X* such that
@ lIx* =1
(i) x*(x) =d
(iii) x*(m) = 0 forallm € M .

Proof. Let Y = M + lin{x} := {m + ax, m € M, o € F}. Then each y in Y is uniquely expressible in
the form y = m + ax for some m € M and some scalar «. Indeed, if

y=m; +ax =my+ Bx

for some m,m, € M and some scalars @ and §, then (8 —a)x = m; —m; € M.
Claim: o« = §. If « # B, then since M is a subspace

1
X = —(m1 —mz) EM,
o

B

a contradiction since x ¢ M. Hence, « = B and consequently m{ = ms.
Define f : Y — F by

J) = fm+ax) =ad.

Since the scalar « is uniquely determined, f is well defined.
Claim: f is a bounded linear functional on Y.
Linearity: Let y; = m; 4+ a1x and y, = mj, + ayx be any two elements of ¥ and A € F. Then

Sy + y2) = f(Amy + mz) + Ay + @2)x) = (Aay + a2)d = hard +azd = Af(y1) + f(y2).

Boundedness: Let y = m 4+ ax € Y. Then

m m
Il =l + axl) = lel | 2 4 x| = fal |x = (=) = lald = 1701
o o
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ie., | f(»)] <|y| forall y € Y. Thus, f is bounded and || /|| < 1.

We show next that || /|| = 1. By definition of infimum, given any € > 0, there is an element m_ € M such
that |[x —m_|| <d + €. Letz = X7 Thenz e Y, ||lz|]l = 1 and
lx —m||
d d
/@] =

> .
x—=m.  d+e
Since ¢ is arbitrary, it follows that | f(z)| > 1. Thus

L= /@1 = 1/=l =111

Thus, || f| = 1.
It is clear that and f(m) = 0 forallm € M and f(x) = d. By Theorem 5.1.4, there is an x* € X™* such
that

x*(y) = f(y)forall y € Y and |Ix*|| = | /1.

Hence, ||x*|| = 1l and x*(m) = 0 forallm € M and x*(x) = d. ]
Corollary

Let (X, | - ||) be a normed linear space and xo € X \ {0}. Then there exists an x* € X*, such that
x*(xo) = [lxoll and || x*| = 1.

Proof. Consider M = {0}. Since xo € X \ {0}, it follows that xo & M and sod = d(xo, M) = ||x0|| > 0.
By Theorem 5.2.1, there is an x* € X™* such that x*(xo) = ||xo]| and || x*| = 1. [ |

The following result asserts that X * is big enough to distinguish the points of X.

Corollary
Let (X, | - ||) be a normed linear space and y, z € X. If y # z, then there exists an x* € X™*, such that

x*(y) # x*(2).
Proof. Consider M = {0}. Since y # z, it follows that y — z ¢ M and consequently

d=d(y—zM)=|y—zll>0.

By Theorem 5.2.1, there is an x* € X* such that x*(y — z) = d > 0. Hence x*(y) # x*(z2). ]
Corollary
For each x in a normed linear space (X, | - ||),

[l = sup{lx* () | x* € X*, x| = 1}.

Proof. If x = 0, then the result holds vacuously. Assume x € X \ {0}. For any x* € X* with ||x*|| = 1,
IX* O = llx*[Hlx ]l = llx]l.

Hence, sup{|x*(x)| | x* € X™*, [x*]| = 1} < |Ix]|.
By Corollary 5.2.1, there is a x* € X™* such that ||x*|| = 1 and x*(x) = ||x||. Therefore

lxll = Ix* ()] = sup{x™(x)] | x* € X*, [Ix*|| = 1},
whence || x|| = sup{|x*(x)| | x* € X*, |x*|| = 1}. ]
Theorem
If the dual X* of a normed linear space (X, | - ||) is separable, then X is also separable.
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Proof. Let S = S(X™*) = {x* € X* | ||x*|| = 1}. Since any subset of a separable space is separable, S
is separable. Let {x; | n € N} be a countable dense subset of S. Since x; € S for each n € N, we have

that ||x;r|| = 1. Hence, for each n € N there is an element x, € X such that ||x,| = 1 and |x; (x,)| > %

(Otherwise |x; (x)| < % forall x € X and so || x| < %, a contradiction.) Let

M = lin({x, | n € N}).
Then M is separable since M contains a countable dense subset comprising all linear combinations of the
xn’s with coefficients whose real and imaginary parts are rational.
Claim: M = X. If M # X, then there is an element xo € X \ M such that d = d(xo, M) > 0. By

Theorem 5.2.1, there is an x* € X ™* such that |[x*|| = 1,ie. x* € S,and x*(y) = Oforall y € M. In
particular, x*(x,) = 0 for all n € N. Now, for each n € N,

1
> < R Gl = i) = ¥ ()l = 165 = X))l = s = x*1.

But this contradicts the fact that the set {x; | # € N} is dense in S. Hence M = X and, consequently, X
is separable. |

The converse of Theorem 5.2.2 does not hold. That is, if X separable, it does not follow that its dual
X* is also be separable. Take, for example, £;. Its dual is (isometrically isomorphic to) €. The space £;
is separable whereas £, is not. This also shows that the dual of £ is not (isometrically isomorphic to) £;.

Definition
Let M be a subset of a normed linear space X . The annihilator of M, denoted by M+, is the set

Mt ={x*e X*|x*(y) =0 forally € M }.
It is easy to show that M+ is a closed linear subspace of X*.

Theorem
Let M be a linear subspace of a normed linear space X . Then
X* M+ =~ M~
Proof. Define ® : X*/ M+ — M* by
O(x* + M1)(m) = x*(m) for all x* € X* andallm € M.

We show that ® is well-defined. Let x*, y* € X* such that x* + M+ = y* + M. Then x* —y* € M+
and so x*(m) = y*(m) for allm € M. Thus ®(x* + ML) = ®(y* + M1); ie., ® is well-defined.
Clearly, ®(x* + M ™) is a linear functional on M .

We show that @ is linear. Let x*, y* € X* and A € F. Then, forallm € M,

O((x* + M) + A" + MP)(m) = O(* +hy* + M) (m) = (x* + 4y*)(m)
= x"(m)+Ay*(m)
= O(x* + M*Y)m) + Ad(y* + M) (m)
(B(x* + ML) + A0 + M1)) (m).
Hence, ®((x* + ML) + A(y* + ML) = O(x* + ML) + Ad(y* + ML),

We now show that ® is surjective. Let y* € M *. Then, by Theorem 5.1.4, there is an x* € X* such that
y*(m) = x*(m) forallm € M and ||y*|| = ||x*||. Hence, forallm € M,

O(x* + M)(m) = x*(m) = y*(m).
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Thus ®(x* + M) = y*. Furthermore,
I+ M < ] = ) = [P0* + MY
But for any y* € M+, x* + M+ = (x* + y*) + M. Hence, forallm € M,
OO + ME)om)| = |(x* + y*) )| < [lx™ + y7 |l

That is, ®(x* 4+ M ™) is a bounded linear functional on M and |®(x* + ML)|| < |x* + p*| for all
y* € M+, Thus
|G + M| < nfx* 4 pT) = 1+ M.
y*EML

It now follows that | ®(x* + ML)| = ||x* + M. ]
5.3 Bidual of a normed linear space and Reflexivity

Let (X, | - ||) be a normed linear space over IF and x € X . Define a functional ®, : X* — F by
D, (x*) = x*(x) forall x* € X*.
It is easy to verify that ® is linear and for each x* € X'*,
[Px ()| = [x" )] = Ix*[llx]l-
That is, @, is bounded and || D || < ||x||. By Corollary 5.2.3,
[l = sup{|x*(x)| | x* € X*, Ix™]| = 1} = sup{|@x(x)] | x* € X7, [|x™[| = 1} = || Dx]|.

This shows that ® is a bounded linear functional on X*,i.e., &, € (X*)* = X** and || D« | = ||x||. The
space X ** is called the second dual space or bidual space of X. It now follows that we can define a map
Jy i X — X** by

Jyx = &y, forx e X, thatis, (Jyx)(x*) =x"(x) forx € X and x* € X*.

It is easy to show that J,, is linear and ||x|| = || ®x| = ||/, x||. Thatis, J, is a linear isometry of X into
its bidual X**. The map J, as defined above is called the canonical or natural embedding of X into its
bidual X**. This shows that we can identify X with the subspace J, X = {J, x | x € X} of X**.

Definition
Let (X, | - ||) be a normed linear space over F. Then X is said to be reflexive if the canonical embedding
Jy : X — X** of X into its bidual X** is surjective. In this case X = X**.

If X is reflexive, we customarily write X = X **. The equality simply means that X is isometrically
isomorphic to X **. Reflexivity of X basically means that each bounded linear functional on X* is an
evaluation functional. Since dual spaces are complete, a reflexive normed linear space is necessarily a
Banach space. It is therefore appropriate to speak of a reflexive Banach space rather than a reflexive normed
linear space.

Theorem

(1) Every finite-dimensional normed linear space is reflexive.

(2) A closed linear subspace of a reflexive space is reflexive.
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Proof. (1). If dimX < oo, then Proposition 4.2.4 implies that dimX = dimX ™ = dimX **. Since J, X is
isometrically isomorphic to X, dim(J,, X)) = dimX = dimX™**. Since J,, X is a subspace of X**, it must
equal to X **.

(2). Let X be reflexive and M a closed linear subspace of X. Given y** € M **, it must be shown that
there exists y € M such that J,,y(y*) = y*(y) = y**(»*) for all y* € M*. Define a functional ¥ on
X* by

Y =y (), xTe X
Clearly, ¥ is linear and
[y O = 1™ Hlx I < 1™ X7

so Y € X**. By reflexivity of X, there exists y € X such that J,, y = . Thatis, ¥ (x*) = x*() for each
x* € X*. If y ¢ M, then by Theorem 5.2.1, there exists an xg € X such that x§(y) # 0 and x;(m) = 0
forall m € M. Then

0# x5(») =¥ (xg) = y™(xglm) = ¥y (0) =0
which is absurd. Thus y € M and x*(y) = ¥ (x*) = y** (x*|p), x* € X*. By Theorem 5.1.4, every

y* € M* is of the form y* = x*|5s for some x* € X*. Thus
Uy »O®) =y () =™ ("), »* € M*, and the proof is complete. |

Theorem
A Banach space X is reflexive if and only if its dual X* is reflexive.

Proof. Assume that X is reflexive. Let J, : X — X™ and J,, : X* — (X*)* = X™** be the
canonical embeddings of X and X * respectively. We must show that J, « is surjective. To that end, let
X*** e X = (X**)* and consider the following diagram:

skeskok

x> 5 F

x =
Define a functional x* on X by x* = x***J,.. It is obvious that x* is linear since both x*** and J, are
linear. Also, foreach x € X,

IXFOO| =[x T G = ™ T x[F = ™ [ flx]l-

i.e., x* is bounded and [x*| < [[x***|. Hence x* € X*. We now show that J_, (x*) = x***. Let
x** € X** be any element. Since J,, is surjective, there is an x € X such that x** = J_ x. Hence

X)) = X (T x) = xF(x) = Jyx(xF) = T xF (e x) = T x0T (M),

and therefore J, x* = x***. That s, J,, is surjective.

Assume that X™* is reflexive. Then the canonical embedding J, . : X* — X™** is surjective. If
Jy X # X let x** € X** \ J,X. Since J, X is a closed linear subspace of X **, it follows from
Theorem 5.2.1 that there is a functional ¢ € X*** such that ||¢|| = I, ¢(x**) = d(x**, J, X), and
¢(Jyx) = 0forall x € X. Since J, is surjective, there is an x* € X such that J,x* = ¢. Hence, for
eachx € X,

0= ¢(Jyx) = T x*(Jyx) = (Jy 0" = x*(x),
i, x*(x) = 0 forall x € X. This implies that x* = 0. But then 0 = J_, x* = ¢, a contradiction since
¢ # 0. Hence J, X = X**;ie., J, issurjective. |

Exercise
Show that if X is a non-reflexive normed linear space, then the natural inclusions X C X** C
X*** C.and X C XY C XM C - are all strict.

We showed earlier (Theorem 5.2.2) that if the dual space X * of a normed linear space X is separable,
then X is also separable, but not conversely. However, if X is reflexive, then the converse holds.
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Theorem
If X is a reflexive separable Banach space, then its dual X * is also separable.

Proof. Since X is reflexive and separable, its bidual X** = J, X is also separable. Hence, by Theo-
rem 5.2.2, X'* is separable. |

Examples
(1) For1 < p < oo, the sequence space ¢, is reflexive.

(2) The spaces ¢y, ¢, €1, and £, are non-reflexive.

(3) Every Hilbert space H is reflexive.

5.4 The Adjoint Operator

Definition
Let X and Y be normed linear spaces and T € B(X,Y ). The Banach space adjoint (or simply adjoint)
of T, denoted by T*, is the operator T* : Y* — X* defined by

(T*y*)(x) = y*(T'x) forall y* € Y* and all x € X.

The following diagram helps make sense of the above definition.

T
X — Y
x* Iy

It is straightforward to show that for any y* € Y*, T*y™* is a linear functional on X . Furthermore, for
any y* € Y*andx € X
1Ty ) = 1y (Tl < Iy* T Hx],

i.e., T*y* is a bounded linear functional on X and | T*y*|| < || T||ll»*|-
Example
Let X =¢, =Y and define T : {1 — £, by
Tx =T(x1, x2, X3, ...) = (0, x1, x2, X3, ...), Where x = (x,) € {1,
the right-shift operator. Then the adjoint of T is T* : {oc — £ iS given by
T*y =T*(y1. y2. y3, -..) = (¥2. y3. ...), Where y = (y) € loo.

the left-shift operator.

Theorem
Let X and Y be normed linear spaces over F and let T € B(X,Y).

(a) T* is a bounded linear operator on Y*.

(b) The map A : B(X,Y) —> B(Y*, X™) defined by AT = T* is an isometric isomorphism of
B(X,Y) into B(Y*, X*).
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Proof. (a) Let yi, y; € Y* andw € F. Then, forall x € X

T*(ayy +y3)(x) = (ay) +y))(Tx) = ayj(Tx) + y5(Tx)
= aT*y](x)+T*y;(x) = (@T*y] + T*y3)(x).
Hence, T*(ay} + y3) = aT*yf + T*yj.

Furthermore, as shown above, | 7*y*|| < ||T||||»*|. Hence, T* € B(Y*, X*) and | T*|| < || T|.
(b) We show that || T*|| = ||T||, whence ||AT*| = ||T*|. Indeed,

17|

sup ||Tx| = sup ( sup |y*(Tx)|) (by Corollary 5.2.3)
lxll=1 lxll=1 \lly*lI=1

ly*li=1 \lIxl=1 ly*li=1
17]1.

sup (sup Iy*(TX)I) = sup [T7y*|

5.5 Weak Topologies

We have made the point that a norm on a linear space X induces a metric. A metric, in turn, induces
a topology on X called the metric topology. It now follows that a norm on a linear space X induces a
topology which we shall refer to as the norm topology on X . In this section we define other topologies on a
linear space X that are weaker than the norm topology. We also investigate some of the properties of these
weak topologies.

5.5.1 Definition
Let (X, | - ||) be a normed linear space and F C X*. The weak topology on X induced by the family F,
denoted by o (X, F), is the weakest topology on X with respect to which each x* € F is continuous.

5.5.2 Remark
The weak topology on X induced by the dual space X™* is simply referred to as “the weak topology on X
and is denoted by o (X, X*).

What do the basic open sets for the weak topology o (X, X*) look like?
Unless otherwise indicated, we shall denote by ®, ®, @, ... finite subsets of X'*.
Let xo € X, ® and € > 0 be given. Consider all sets of the form

Vixe;:®; ¢) = {xeX|[x*(x)—x"(x0)| <€, x* € ®}

m {x e X |[|x*"(x)—x * (xo)| <e}.

x*ed

5.5.3 Proposition
[1] xo € V(xo; P; €).

[2] Given V(xo; ®1; €1) and V(x¢; P2; €3), we have
V(xo; @1 U @2; min{eq, €2}) C V(xo; @13 €1) N V(xo; P25 €2).
[3] If x € V(xg; ®; €), then there is a § > 0 such that V(x; ®; §) C V(xo; D; €).

Proof. (1) It is obvious that xo € V(x¢; ®; €).
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(2) Let x € V(xo; ®; U ®5; min{eyq, €2}). Then for each x* € &y,
[x*(x) — x*(x0)| < min{eq, €2} < €.

Hence x € V(x¢; P1; €;1). Similarly, x € V(xo; P2; €2). It now follows that
x € V(xo; ®1; €1) N V(xp; Pa; €2) and, consequently

V(xo: @1 U @;; minfe, e2}) C V(xo: Pi1; €1) N Vi(xo: P2; €2).

(3) Let x € V(xo; P; €) and y = max{|x*(x) — x*(xo)| | x* € ®}. Then 0 < y < €. Choose § such
that 0 < § < € — y. Then, for any y € V(x; ®; §) and any x* € &, we have

IX* () = x"(xo)| =[x () =x* ()| + [x"(x) —x"(x0)| <d+ ¥ <e. u

Recall that a collection B of subsets of a set X is a base for a topology on X if and only if
(i) X = U{B | B € B};i.e., each x € X belongs to some B € 3, and
(i) if x € B1 N B, for some By and B, in B3, then there is a B3 € BB such that x € B3 C By N B;.

5.5.1 Theorem
Let B={V(x;®; €¢)| x € X, P(finite) C X*, € > 0}. Then B is a base for a Hausdorff topology on X .

Proof. (i) Itis clear that x € V(x; ®; ¢) foreach x € X.

(ii) Let x € V(xy; ®1; €1) N V(xa; Py; €). Then x € V(xy; ®1; €1) and x € V(xz; Da; €2).
By Proposition 5.5.3 (3), there are §; > 0 and §; > 0 such that V(x; ®y; 8;) C V(xy; Py; €) and
V(x; ®z; §2) C V(xa; ®2; €2). By Proposition 5.5.3 (2),

V(x; ®; U Dy; min{dy,82}) C V(x; @y; 61) N V(x; Dy; 62) C Vixy; Dp; €1) N V(xa; Py; €2).

Hence, B is a base for a topology on X.

Finally, we show that the topology generated by B is Hausdorff. Let x and y be distinct elements of X .
By Corollary 5.2.2, there is an x* € X* such that x*(x) # x*(»). Let 0 < € < |x*(x) — x*(y)|. Then
V(x; x*; 5)and V(p; x*; ) are disjoint neighbourhoods of x and y respectively. |

It is easy to see that each x* € X™* is continuous with respect to the topology generated by B. Indeed,
let xg € X, x* € X* and € > 0. Since x* is continuous with respect to the norm topology on X, there is a
norm neighbourhood U of x¢ such |x*(x) — x*(xo)| < € forall x € U. It now follows V(xo; x*; €)isa
neighbourhood of x¢ in the topology generated by B and |x*(x) — x*(x¢)| < € for all x € V(xo; x*; €).

One shows quite easily that the topology generated by
B={V(x;®; ¢)| x € X, D(tinic) C X*, € >0}

is precisely o (X, X*), the weak topology on X induced by X *. Therefore, a set G is open in the topology
o (X, X*) if and only if for each x € G there is a finite set
O = {x*, x{, xJ, ..., x5} C X*and an € > O such that V(x; ®; €) C G.

It now follows that a normed linear space X carries two natural topologies: the norm topology induced
by the norm on X and the weak topology induced by its dual space X *. Topological concepts that are asso-
ciated with the weak topology are usually preceded by the word “weak”; for example, weak compactness,
weak closure, etc. Those topological concepts pertaining to the topology generated by the norm on X are
usually preceded by the word “norm”, e.g. norm-closure or by the word “strong”, e.g. strongly open set.

5.5.4 Lemma
Let {x*, x{, x3, ..., xy} C X*. Then
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(1) x* € lin{x}, x5, ..., x}} if and only if ("}, ker(x}) C ker(x*).

Q) If {xi", x;‘, ..., X,} is a linearly independent set, then for any set of scalars {c1, c2, ..., cn},
Nizi{x € X | xF(x) = ¢i} # 0.
n
Proof. (1) If x* € lin{x}, xJ, ..., x;}, then x* = Zoc,-x;" for some scalars «q, o3, ..., oy Let

i=1

n n
X € mker(x;"). Then x/(x) = O foreachi = 1, 2, ..., n. Hence, Zaix;"(x) = 0 and consequently,

i=1 i=1

n
x*(x) = 0;i.e., x € ker(x*). Therefore m ker(x;") C ker(x™).

i=1
n

Conversely, assume that m ker(x}) C ker(x*). We use induction on n. Let us first show that if
i=1
ker(x}) = ker(x*), then x* = ax{ for some nonzero scalar «. Let K = ker(x}) and z € X \ K. Then,
proceeding as in Theorem 5.2.1, each x € X is uniquely expressible as x = y + Az, where y € K and
A € F. Hence, since x*(y) = 0 = x{(»),

x*(x) = Ax*(z) = Ax*(z)xf(z) = (x*(z)) Ax(z) = (x*(z)) X7 (x) = axj(x).

xy(2) xy(2) xy(2)
x*(2)
where o = —(——.
x7(2)
Assume that the result is true forn — 1. Foreachi =1, 2, ..., n, x;" is not a linear combination of
the x]’.’"s forj =1,2,...,nandi # j. Hence, m ker(x]’f‘) is not contained in ker(x}). Therefore there
J#i
isan x; € mker(x]’-") such that x}(x;) = 1. Leto; = x*(x;) foreachi =1, 2, ... ,n. Let x € X and
J#i
n

y = x—Zx;"(x)x,-. Then, foreach j =1, 2, ... ,n,

i=1

XF () = XF(0) = > xf(0)xF (xi) = xF(x) —xF(x) = 0.

i=1

n
Thus, y € m ker(x}). By the assumption, y € ker(x*). Therefore

i=1

0=x*(p) =x*(x) = D_xF(O)x*(xi) = x*(x) = Y_ixf(x) <= x*(x) =) aixf(x),
i=1

i=1 i=1

n
whence x* = E aix;.
i=1

(Q)Let H; = {x € X | x/(x) = ¢;} foreachi =1, 2, ..., n. We want to show that iz, Hi # 0.
The proofis by inductionon n. If n = 1, then, since x} # 0, it follows that H; # @. Assume true forn = k

and let H = ﬂf-{:ll H;. By the linear independence of {x{, x3, ..., Xz}, ﬂf-;l ker(x") ¢ ker(xy, ).
Hence, there is an xg € ﬂf'{=1 ker(x[") such that x;/, ,(xo) # 0. Take any x € ﬂf'{=1 ker(x}) and set
X1 (X)

y = X + axg, where o« = cg41 — Then x/(y) = x/(x) = ¢; foreachi =1, 2, ..., k and

X1 (X0)’
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Xii1(V) = ck41. Thatis, y € H. |

Theorem
Let t denote the norm topology on X . Then

(a) o(X,X*) Cr.

(b) (X, X™*) = t if and only if X is finite-dimensional. Thus, if X is infinite-dimensional, then the
weak topology o (X, X*) is strictly weaker than the norm topology.

Proof. (a) The topology o (X, X'*) is the weakest topology on X making each x* € X* continuous. Hence,
o (X, X*) is weaker than the norm topology t.

(b) Assume that 0 (X, X*) = rand let x* € X *. Then, since x* is continuous when X is equipped with
the norm topology and, by the hypothesis, it is continuous in the weak topology o (X, X*), it is continous
at 0. Therefore there is a finite set ® = {x}, x3, ..., x;} C X* and an € > 0 such that [x*(x)| < 1 for

n
all x € V(0; ®; €). Letz € mker(x;"). Then x/(z) = 0 and so |x](z)| < eforeachi =1, 2, ..., n.
i=1

n n n
That is, z € V(0; ®; €). If x € m ker(x}), then mx € m ker(x[) for each m € Z* since m ker(x}) is
i=1 i=1 i=1
a linear subspace of X. It now follows that mx € V(0; ®; ¢€) for each m € 7% . This, in turn, implies that

1> |x*(mx)| = mx*(x)] <= |x*(x)| < %

n
Since m is arbitrary, x*(x) = 0; i.e., x € ker(x*). Hence mker(x;") C ker(x*). By Lemma 5.5.4,

i=1
n

x* € X* is expressible as x* = Zoc,-x;" for some scalars «y, o, ..., oy. Hence X* is spanned by
i=1

the set {x}, xJ, ..., x;}. This shows that X* is finite-dimensional. By Proposition 4.2.4, X is also

finite-dimensional.

Conversely, assume that X is finite-dimensional. Let {x;, x2, ..., X,} be a basis for X such that
|xx|| = 1foreachk =1, 2, ..., n. Let U C X be open in the norm topology of X. We want to show that
U is open in the weak topology of X . Let xo € U. Then there is an » > 0 such that B(x¢,r) C U. For any

n
xeX,x = Zakxk. Define x} : X — F by x/(x) = a; foreachi =1, 2, ..., n. Since the a;’s are
k=1
uniquely determined, x is well-defined. One shows quite easily that x/ € X* foreachi =1, 2, ..., n.
r
Let ® = {x], xJ, ..., x;}and e = m Then, for any x € V(xo; ®; €), we have |x](x) — x](xo)| < €
foreachi =1, 2, ..., n. Hence, if x € V(xo; ®; €), then

n
< Z |xp(x —x0)| <ne=r.
k=1

n
> Xk (x = xo)xk

k=1

[l = xoll =

That is, x € B(xg,r) C U. It now follows that for each x € U, there is a V(x; ®; €) such that
V(x; ®; €) C U. Hence U is open in the weak topology o (X, X *). Thus, o (X, X*) = 1.
|

The following result asserts that the weak topology and the norm topology yield exactly the same
continuous linear functionals. That is, the linear functionals on X that are continuous with respect to
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the topology o (X, X*) are those that are in X *. Therefore weakening the topology does not affect the dual
space of X.

5.5.3 Theorem
Let X be a normed linear space. Then the dual of X under the topologyo (X, X*) is X*;i.e., (X, o(X, X*))* =
X*.

Proof. By definition of the topology o (X, X™*), itis clear X * is a subset of the dual of X under the topology
o(X,X*)ie, X* C (X, o(X, X*))".
Let f € (X, o(X, X*))". Then, proceeding as in Theorem 5.5.2, there is a finite set
n

{xf, x5, ..., x5} C X* and scalars a1, @3, ..., ay suchthat f = Zaix;". Therefore f € X*. [ ]
i=1

5.5.4 Theorem
Let K be a convex subset of a normed linear space X . Then the closure of K relative to the weak topology

—o(X,X* —
o (X, X*) is the same as the norm-closure of K , i.e., K ot ) =K.
—o(X,X*) | —o(X,X* — . . .
Proof. Since K o ) isclosed and K C K o ) and K is the smallest closed set containing K, it
— _ —oX.X*
follows that K C K o ).
o(X,X")

It remains to show that K C K. Let X0 € X'\ K. Then, by Hahn-Banach’s Theorem, there is
an x* € X* and real numbers ¢; and ¢, such that

Re (x*(x0)) < ¢1 <2 <Re (x*(x)) forall x € K.

Consider V = V(xo; x*; c2—c1) ={x € X | |x*(x) —x*(x0)| < c2—c1}. Then V is a weak neighbour-

hood of xg and V N K = @. Thus x¢ & fU(X’X ), and consequently KU(X’X ) C K.
|

Since the topology o (X, X *) is weaker than the norm topology, every weakly closed set in X is closed.
However, for convex sets we have the following.

5.5.5 Corollary
A convex subset K of a normed linear space X is closed if and only it is weakly closed.

We now turn our attention to the dual space X * of a normed linear space X. X™* carries three natural
topologies: the norm topology, the weak topology o (X*, X**) induced by X ** and the weak* topology
o(X™*, X) induced by X.

Let J, be the canonical embedding of X into its bidual X **. Then X =~ J, X C X™**. A typical basic
open set in the topology o (X *, J, X)) on X* induced by J,, X is

V(ix*s @ €) = {p e X" |[|(Jyx)x") = (Jyx)(»™")| <€, € >0, x € U(finite) C X}
= {PFeXT||Ix*(x)—y*(x)] <€, € >0, x € U(finite) C X}.

It now follows that the weak™* topology o (X *, X)) on X * is precisely the weak topology on X * induced by
Jy X. Thatis, o(X*, X) = o(X™, J, X) — the weak topology on X * induced by elements of X acting as
continous linear functionals on X *.

Let us observe, in passing, that X ** has a weak* topology o (X**, X*) induced by X*. Since X =~
Jy X C X**, the weak topology o (X, X*) on X turns out to be the relative topology on X induced by
o(X**, X™).

5.5.5 Theorem
Let t* denote the norm topology on X *. Then
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(a) o(X*, X)Co(X*, X*) Ct*.
(b) o(X*, X**) = t* ifand only if X is finite-dimensional.

() o(X*, X) =o(X*, X*) if and only if X is reflexive. Thus, if X is non-reflexive, then the weak*
topology o (X*, X) is strictly weaker than the weak topology o (X™*, X **).

Proof. (a) Since J, X C X**, it follows that 0 (X™*, X)) = o(X*, J, X) C o(X*, X**). The containment
o(X*, X*) C t* follows from the fact that o(X™*, X**) is the weakest topology on X* making each
x** e X** continuous and each x** € X** is continuous with respect to 7*.

(b) An argument similar to that used in Theorem 5.5.2(b) shows that o(X™*, X**) = t* if and only
if X* is finite-dimensional. But by Proposition 4.2.4, X* is finite-dimensional if and only if X is finite-

dimensional.
(c) X isreflexive if and only if J, X = X** if and only if (X ™, J, X) C o(X*, X**) if and only if
o(X*, X) Ca(X™*, X*). [ ]

5.5.6 Theorem
Let X be a normed linear space. Then the dual of X* under the weak* topology o(X*, X) is X; i.e.,

(X*, 6(X*, X))* = X.
Proof. Exercise. |

Observe that X* C FX = 1_[ F and that the weak* topology o (X *, X)) on X* is the relative topology
X
on X* induced by the product topology on 1_[ F.
X

5.5.7 Theorem
(Banach-Alaoglu-Bourbaki Theorem). Let X be a normed linear space over F. Then the closed unit ball
in X* is weak* compact; i.e., the set

B*=BX") ={x"eX"||x7| =1}
is compact for the topology o (X*, X).

Proof. Foreach x € X,let Dy = {A € F | |A| < |x]||}. Then, for each x € X, Dy is a closed interval in R
or a closed disk in C according to whether F = R or F = C. Equipped with the standard topology, Dy is
compact for each x € X. Let D = [[{Dx | x € X'}. By Tychonoff’s Theorem, D is compact.

The points of D are just functions f on X such that f(x) € Dy foreach x € X. If x* € B(X™*), then

[Xx* () < Ix*[lllx |l < [|x|| foreach x € X.

Hence x*(x) € Dy foreach x* € B(X*) and x € X. Thatis, B(X™*) C [[{Dx | x € X}. We observe
that the topology that D induces on B(X*) is precisely the weak* topology on B(X ™). It remains to show
that B(X™) is a closed subset of D. To this end, let {xs} be a net in B(X™) and x; — x* € D. Then
xs(x) = x*(x) forall x € X, and forall x, yin X and o, B in IF,

x*ax + By) = libgnx;(ocx + By) = lign[ozx;(x) + Bxs(¥) ] = ax™(x) + Bx*(x).

Thus x* is linear. Since
)] = lim | ()] <

for all x € X, x* is bounded and ||x*|| < 1. That is, x* € B(X ™). Therefore B(X™*) is closed in D and
hence compact. |
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Theorem
(Helly). Let X be a normed linear space over Fand x** € X**. Then, for any finite-dimensional subspace
® of X* and any € > 0, there is an xo € X such that

1) (Jyx0)(x*) =x"*(x*) <= x*(x0) = x**(x*) for each x* € ¥, and

(D) fIxoll = Ix*[ + €.

Proof. Let {x], xJ, ..., x,} be abasis for ®. Then (i) is equivalent to
(") xF(xo) = x**(x]) foreachi =1, 2, ..., n.
n
Let H; = {x € X | x](x) = x**(x)} foreachi =1, 2, ..., nand H = m H;. Then, by Lemma 5.27,

i=1
H # . Choose any xo € H such that ||xo| < d(0, H) + €. Obviously, xo satisfies (i’), hence (i). To
complete the proof, it suffices to show that d(0, H) < || x**|4 ||. Fixan h € H and set iy = h — x¢ and
Hy = H — x¢. Then Hy = ﬂ;’=1 ker(x}) and d (0, H) = d(—xo, Hy) = d(xo, Hy). By the Hahn-Banach
Theorem and Lemma 5.5.4, it follows that

d(0,H) = max{x*(xo)|x* € Hy. [|x*] <1}
n n
= max{Za;x}"(xo) | Zaix;k <1
i=1 i=1
n n
= max{Zaixg*(x;k) | Za;x;" <1
i=1 i=1
n n
= max{xg* (Zo&ix;k) | ZO&;X? <1}
i=1 i=1
< max{xj*(x¥) | x* e ®, |x*| <1} =| x**|cI> Il. |

Theorem

(Goldstine). Let X be a normed linear space and J,, the canonical embedding of X into X**. Let
B={xeX||x|| <1}and B* = {x** € X** | |[x**|| < 1}. Then J, B is dense in B** relative to the
weak* topology o (X **, X*) on X**. That is,

T B XD Z

- = .
Proof. We must show that for each x** € B**, each finite subset ® = {x}, xJ, ..., x;} C X™* and each
€ > 0, thereis an x € B such that J,x € V(x**; ®; €); i.e.,

|Jyx(x]) —x**(x])| <eforeachi =1, 2, ... n.

Let x** € B**. If |x**|| < 1, then, with e = 1 — ||x**||, we have, by Theorem 5.5.8, that there is an
x € X such that (J, x)(x/) = x**(x}) foreachi =1, 2, ..., nand ||x|| < [x**|| + € = 1;ie, x € B.
Hence, x € Band 0 = |J, x(x]) — x**(x})| < eforeachi =1, 2, ... ,n.

If |x**|| = L, letr = [max. [l xF|l and y** = (l - 2€_r) x**. Then || y**|| < 1, and so by the first

part, there is an x € B such that (J,, x)(x]) = y**(x]) foreachi = 1, 2, ..., n. Furthermore, for each
i=1,2,...,n,
<€ ]

[ X () =) = [y () = x™() = 5 =

NS NeY

€
2r
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Corollary
Let X be a normed linear space over F and let J,, be the canonical embedding of X into X**. Then J, X
is dense in X ** relative to the weak* topology o (X **, X*) on X**. That is,

o (X **,X¥)

T X = X**
Proof. Let x** € X** \ {0}. Then
YT B = T BTN c e
e S0 T . |
X**,X* . . . X**,X*
Since JXXU( ) is a linear subspace of X™**, it now follows that x** € JXXU( ). Hence
X**,X* . X**,X*
X** C JXXU( ). Of course, since J, X C X**, we have that JXXU( ) C X**, and conse-
X**,X*
quently JXXU( = x, |

Theorem
Let X be a normed linear space over F and B = {x € X | ||x|| < 1}. Then X is reflexive if and only if B
is weakly compact.

Proof. Assume that X is reflexive and let J,, be the canonical embedding of X into X **. Equip B (respec-
tively, B**) with the weak (respectively, weak™*) topology and consider the map f : B** — B defined by
S (Jyx) = x. Now, B** is weak* compact by Banach-Alaoglu-Bourbaki Theorem and f(B**) = B. To
prove weak compactness of B, it suffices to show that /" is continuous. To that end, let (J,, x;5) be a net in
B** that converges to J,, x in the topology o (X **, X*) on X **. Then, for each x* € X*, we have that

X (U xs)) = X" (xs) = (Je xp) (X)) = Jyx(x*) = x*(x) = x*(f (Jy X))

Thus, f(J, xs) = f(J,x) in the weak topology on B.
Conversely, assume that B is weakly compact. Equip B (respectively, B**) with the weak (respec-

tively, weak*) topology. It follows that J, is continuous. Hence, J, B is weak* compact in B**. But
Jy B oETRXT _ B**.Hence J, X = X** and so X is reflexive. |
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Chapter 6

Baire’s Category Theorem and its
Applications

6.1 Introduction

Recall that a subset S of a metric space (X, d) is dense in X if S = X; ie., for each x € X and each
€ > 0, there is an element y € .S such that d(x, y) < €, or equivalently, S N B(x,€) # 0.

Theorem
Let (X, d) be a complete metric space. If (G,) is a sequence of nonempty, open and dense subsets of X

then G = m G, isdense in X .

neN

Proof. Let x € X and € > 0. Since G is dense in X, there is a point x; in the open set G; N B(x, €).
€
Let v be a number such that 0 < r; < 3 and

B(xy1,r1) C Gy N B(x,¢€).
Since G is dense in X, there is a point x; in the open set G, N B(xy,r1). Let r, be a number such that
€
0<r< 7 and
B(x3,1r2) C Gy N B(xy, ).
Since G'3 is dense in X, there is a point x3 in the open set G3 N B(x3, r3). Let r3 be a number such that
€
0<r; < 7 and
B(x3,r3) C G3 N B(xa, ).
Continuing in this fashion, we obtain a sequence (x,) in X and a sequence (r,) of radii such that for each

n=12,3,...,

6 R — -
0<r, < o B(xXp+1,7u+1) C Gpy1 N B(xy, 1) and B(x1,71) C G1 N B(x,€).

It is clear that
B(Xp+1,tn+1) C B(xn,ry) C B(xp—1,7p—1) C -+ C B(x1,r1) C B(x,¢€).

Let N e N. If k > N and £ > N, then both xj and x; lie in B(x,, ry). By the triangle inequality

2e €
d(xXp, xg) < d(xp, xy) + d(xy,xg) <21y < N = NI
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Hence, (x,) is a Cauchy sequence in X. Since X is complete, there is a y € X such that x,, — y as
n — oo. Since xy lies in the closed set B(xy, ry) if k > n, it follows that y lies in each B(x,, r,). Hence

y lies in each G,,. That is, G = m Gn # 0. Itis also clear that y € B(x, €). ]

neN

Definition —
A subset S of metric space (X, d) is said to be nowhere dense in X if the set X \ S is dense in X; i.e.,

X\S=x.

Proposition
A subset S of a metric space (X, d) is nowhere dense in X if and only if the closure S of S contains no
interior points.

Proof. Assume that S is nowhere dense in X and that (S5)° # @. Then there is an € > 0 and an x € S such
that B(x,€) C S. Butthen X \ 'S C X \ B(x, €). Since X \ B(x, €) is closed, X \ B(x,€) = X \ B(x,€).
Therefore

X\ScCX\B(x,e)CX,

where the second containment is proper. This is a contradiction. Hence, (S)° =90
Conversely, assume that (S)° = @. Then, for each x € S and each ¢ > 0,

B(x,e)N X\ S # 0.

This means that each x € S is a limit point of the set X \ S. Thatis, S C X \ S. Thus,

X=SuX\S)cX\Sux\S=Xx\ScXx.

Hence X = X \ S and so S is nowhere dense in X |

Example
Each finite subset of R is nowhere dense in R.

Definition
A subset S of a metric space (X, d) is said to be

(a) of first category or meagre in X if S can be written as a countable union of sets which are nowhere
dense in X . Such sets are also called thin.

(b) of second category or nonmeagre in X if it is not of first category in X . Such sets are also called
fat or thick.

It is clear that a subset of a set of first category is itself a set of first category. Also, a countable union of
sets of first category is again a set of first category.

Example
The set Q of rationals is of first category in R.

Theorem
(Baire’s Category Theorem). A complete metric space (X, d) is of second category in itself.

Proof. Assume that X is of first category. Then there is a sequence (G,) of sets which are nowhere dense in
X suchthat X = U Gp,. Replacing each G, by its closure, we get X = U G,,. The sets G, are closed and

n n
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nowhere dense in X. It follows that the sets U, = X \ G, are open and dense in X. Since X is complete,
it follows, by Theorem 6.1.1, that U = m U, is dense in X and therefore nonempty since X is nonempty.

n

However X = U G, implies that
n

0#(\Un =X \Gn) =X\ JGu=0.

which is absurd. |

6.2 Uniform Boundedness Principle

We have made the point that if X and Y are normed linear spaces, then B(X, Y') is a normed linear space.

Definition
A subset F of B(X, Y) is said to be

(a2) norm (or uniformly) bounded if

sup{||T|| | T € F} < oc.

(b) pointwise bounded on X if
sup{||Tx|| | T € F} < o0

foreachx € X.

Clearly, a norm bounded set is pointwise bounded on X. Uniform Boundedness Principle (or Banach-
Steinhaus Theorem) says that if X is a Banach space, then the converse also holds.

Theorem
(Uniform Boundedness Principle). Let X be a Banach space, Y a normed linear space and let F be
subset of B(X,Y') such that sup{||Tx| | T € F} < oo foreach x € X. Thensup{||T|| | T € F} < oo.

Proof. For each k € N, let
A ={x € X ||[Tx| <kforal T € F}.

Since T is continuous, Ay is closed. Indeed, let x € Ay. Then there is a sequence (x,) C Ay such that

lim x, = x. Since x,, € Ay foreach n, |Txy| < k forall T € F. Hence
n—>00

ITx|| < |ITx = Txull + I Txull < IT||Ixn —x|| + k& — kasn — oo.
That is, |7 x|| < k and consequently x € Ay.
o0

By the hypothesis, X = U Ay. By Baire’s Category Theorem, there is an index k¢ such that (A—ko)0 £ 0.
k=1
That is, there is an xg € A—ko and an € > 0 such that B(x¢,€) C A—ko = Ag,.
Let x € X \ {0} and set z = xo + Ax, where A = ﬁ Then ||z — xo|| = Allx]| = % < €. Hence
x
z € B(xo,€) C A, and, consequently, | Tz|| < ko forall T € F. It now follows that

ko 4ko

1 1
ITx] = 172 = Txoll = (1Tl + 1 Txol) < 5= = = x].

€
4k
Hence ||T|| f—oforallTef. ]
€
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It is essential that X be complete in Theorem 6.2.1. Consider the subset £, C ¢; of finitely nonzero
sequences in £1. The set £( is dense but not closed in £;. For each n € N, let T,x = nx,, where
X = (x,) € £o. Foreach x € £y, T,x = 0 for sufficiently large n. Clearly, (7}) is pointwise bounded on
£o. On the other hand, for (e,) € o, ||ex|| = 1 and || T, || = Then = n forall n € N. Thus (7}) is not norm
bounded.

Corollary
Let S be a subset of a normed linear space (X, || - ||) such that the set {x*(x) | x € S} is bounded for each
x* € X*. Then the set S is bounded.

Proof. Let J,, be the canonical embedding of X into X **. By the hypothesis, the set {J, x(x*) | x € S}
is bounded for each x* € X™*. Since X* is a Banach space, it follows from the Uniform Boundedness
Principle that the set {J,, x | x € S} is bounded. Since ||J, x| = ||x||, the set S is also bounded. ]

Let X and Y be normed linear spaces. We remarked earlier that the strong operator limit 7" of a
sequence (7,) C B(X, Y) need not be bounded. However, if X is complete, then T is also bounded. This
is a consequence of the Uniform Boundedness Principle.

Corollary
Let (T},) be a sequence of bounded linear operators from a Banach space X into a normed linear space Y .
If T is the strong operator limit of the sequence (T,), then T € B(X,Y).

Proof. The proof of linearity of 7 is straightforward.

We show that T is bounded. Since for each x € X, T,x — Tx as n — oo, the sequence (7},x) is
bounded for each x € X. By the Uniform Boundedness Principle, we have that the sequence (|| 75||) is
bounded. That is, there is a constant M > 0 such that || 7,| < M for all n € N. Therefore

ITwx|l < ITullllx|l = M|lx| forall n € N.
By continuity of the norm,
I Tx|| <1 Tx = Tux|l + |Tux| < ||Tx — Tux|| + M| x| - M| x| asn — oco.

Hence, ||Tx|| < M|/ x|| foreach x € X,ie., T € B(X,Y). ]

6.3 The Open Mapping Theorem

Definition
Let X and Y be normed linear spaces over the same field[F andlet T : X — Y. Then we say that T is an
open mapping if T U is open in Y whenever U is open in X .

Lemma
Let X and Y be Banach spaces over the field F and let T be a bounded linear operator from X onto Y.
Then there is a constant r > 0 such that

By (0.2r):={y € Y | |yll <2r} C TB4(0,1).

o0
Proof. It is easy to see that X = U nB,(0,1). Indeed, if x € X, then there is an n € N such that

n=1
x|l <n.Hence, x € nB, (0, 1). Since T is surjective,

Y=TX=T (U nB, (0, 1)) = JnTB,(0.1) = [ JnTB,(0.1).
n=1 n=1

n=1
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By Baire’s Category Theorem, there is a positive integer #n¢ such that (no7T B, (0, 1))° # @. This implies
that (7B, (0, 1))° # 0. Hence, there is a constant » > 0 and an element yo € Y such that B, (yo, 4r) C
TB, (0,1). Since yo € TB, (0, 1), it follows, by symmetry, that —yo € T B, (0, 1). Therefore

B,(0,4r) = B, (y0,4r)—y0 C TB,(0,1) + TB, (0, 1).

Since T'B, (0, 1) is a convex set, 7B, (0,1)+TB,(0,1) = 2T B, (0, 1). Hence, B, (0,4r) C 2T B, (0, 1)
and, consequently, B, (0,2r) C TB, (0, 1). ]

Lemma
Let X and Y be Banach spaces over the field F and let T be a bounded linear operator from X onto Y.
Then there is a constant r > 0 such that

By (0.r) :={y €Y ||yl <r}C TB,(0.1).
Proof. By Lemma 6.3.2, there is a constant » > 0 such that B, (0,2r) C TB,(0,1). Let y € B, (0,r),
ie,y €Y and |y| <r. Then, withe = 7, there is an element z; € X such that
Izl < 2 and fly — =1 < 2.
2 2

Since y — Tzy € Y and ||y — T'z;|| < 5 < r,itfollows that y — T'zy € B, (0,r). Therefore there is an
element z, € X such that

1 r
221l < 55 and | (v = Tz1) = Tzl < 5

1
In general, having chosen elements z; € X, 1 < k < n, such that ||z | < 7% and

;
Iy =Tz 4+ T4+ Tzl < 55

1
pick z,+1 € X suchthat ||zy41 || < — it and

ly=TC+z+ -tz + )l =y Tz +Tzo+ -+ Tz + Tzpp1)| < 2,,+1

o0
Claim: The series Z z) converges to a pointx € B, (0,1)and T'x = y.
k=1

o0
Proof of Claim: Since X is complete, it suffices to show that Z llzx || < oco. But this is obviously true
k=1

o0 o0 1
ankn <> ="l
k=1 k

=1

since

o0
Hence, the series Z zx converges to some x € X with ||x| < 1,ie., x € B, (0, 1). Since
k=1

lim
n—>00

continuity of 7" implies that

Tx = nlggoT (sz> =y.
k=1
Thatis, Tx = y. ]
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Theorem
(Open Mapping Theorem). Let X and Y be Banach spaces and suppose that T € B(X,Y). If T maps
X onto Y, then T is an open mapping.

Proof. Let U be an open set in X. We need to show that 77U is open in Y. Let y € TU. Since
T is surjective, there is an x € U such that Tx = yp. Since U is open, there is an € > 0 such that
B,(x,e) = x+ B,(0,e) C U. Butthen y + TB,(0,¢) C TU. By Lemma 6.3.3, there is a constant
r > O such that B, (0,7) C TB, (0,1). Hence B, (0,re) C TB, (0, ¢). Therefore

B(y,re)=y+ B, (0,re) Cy+TB,(0,¢e) CTU.

Hence TU isopenin Y. |

Corollary
(Banach’s Theorem). Let X and Y be Banach spaces and assume T € B(X,Y) is bijective. Then T~ is

a bounded linear operator from Y onto X, i.e., T 1e B, X).

Proof. We have shown that 7! is linear. It remains to show that 77! is bounded. By Theorem 4.1.4, it
suffices to show that 7! is continuous on Y. To that end, let U be an open set in X. By Theorem 6.3.1,
(T™H~"(U) = TU isopenin Y. Hence T~! is continuous on Y. |

6.4 Closed Graph Theorem

Definition
Let X and Y be linear spaces over a field F and T : X — Y. The graph of T, denoted by G(T), is the
subset of X x Y given by

G(T)={(x,Tx) | x € X}.

Since T is linear, G(T') is a linear subspace of X x Y. Let || - ||x and || - ||y be norms on X and Y
respectively. Then, forx € X and y € Y, ||(x, »)|| := ||x|lx + ||y|l¥ defines anormon X x Y. If X and
Y are Banach spaces, then sois X x Y.

Definition
Let X and Y be normed linear spaces over F. A linear operator T : X — Y isclosed ifits graph G(T') is
a closed linear subspace of X x Y.

Theorem
(Closed Graph Theorem). Let X and Y be Banach spaces and T : X — Y a closed linear operator. Then
T is bounded.

Proof. Since X x Y, with the norm defined above, is a Banach space, and by the hypothesis G(T') is closed,
it follows that G(T') is also a Banach space. Consider the map P : G(T') — X given by P(x,Tx) = x.
Then P is linear and bijective. It is also bounded since

1P Ce, TX)| = lIx[l < [lxll + 1Tx[l = [ (x, Tx)].

That is, P is bounded and || P|| < 1. By Banach’s Theorem (Corollary 6.3.4), it follows that P~! : X —
G(T) givenby P~ 'x = (x, Tx) for x € X, is also bounded. Hence ||(x, Tx)|| = | P x| < || P~ || ||x].
Therefore

Ie, T = Ixll + 1Tl < [P7HHIx] <= I1Tx] < [P~ ] lx].

That is, T is bounded and || T'|| < || P~']. |
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