Series

Series

为了应付接下来柯西序列的定义, 仅仅简单地定义一下序列. 更详细的定义, 见E.Ok: Series

Def 1: 有理数序列. for index set .

Def 2 (稳定): 如果, 则称该序列是稳定的.

  • 该定义的要求过于严格, 因为对初始值有要求

Def 2Def 3 (完美稳定): for , . 即N之后的序列都是稳定的, 则称该序列完美稳定.

Def 3Def 4 (Cauchy Series): . 即对任意小正数, 柯西数列都是完美稳定的. 我们还没定义到实数, 所以暂定为正有理数.

proposition 1: 是柯西序列.

  • 证: for , suppose , we have: . For (proposition 17 in From Natural to Rational), we have . Q.E.D
  • 好经典的极限证明

Def 5 (有界序列): , 定义有界序列为: .

  • 一个序列是有界的, iff .

lemma 1: 任何一个有限序列都是有界的.

  • 证: suppose for any series only contain one element , it is bounded on as .

    • suppose for some n, the n-length series are bounded on M. This means .
    • for length series, we would make sure the elements are bounded on M, thus just need to compare the and M. However, because the M doesn’t need to precisely the upper bound of absolute value, then .

    Q.E.D

lemma 2: 任意一个柯西序列是有界的.

  • 证: .

    Q.E.D

Def 6 (序列完美接近): 是完美接近的, 当对于一些.

Def 7 (序列等价): 是等价的, 当.

proposition 2: 等价于 .

  • 证: 这里要用一下放缩法, 因为还没定义对数, 所以不能直接取对数的模. As .

    .

    Q.E.D

Problem Set For Series

5.2.1: 假设两序列等价, 如果其中一个序列是柯西序列, 当且仅当另外一个也一定是.

  • 证: suppose is cauchy series, which means: .

    . With the assumption that . Thus we have: . Also, there is . 简单来说就是对于任意小正数, 两序列永远比该正数还要接近.

    Q.E.D

5.2.2: 懒得写了

上一篇
下一篇