Real Number

Real Number

main def: 记运算.

def 8: 两实数相等, 当且仅当其domain是等价的柯西序列.

  • 该相等是定义明确的, 即:, , . 首先等号是reflexive的(定义得), 其次, 该等号也是transitive和symmetric的.

    • 证: sym: .
    • transitive: . . Q.E.D
  • 该等式满足替换公理.

    • 证: 略. 用有理数序列的接近性性质来证会很快. def 14 in From Natural to Rational.

Add

def 9 (加法): 令, 则.

lemma 3: 如果x,y是实数, 那么x+y也是实数.

  • 证: . if x and y are all real numbers, then . We have that: . For are threshold for a and b under Q.E.D

Multiple

def 10 (乘法): 令, 则.

  • 易证, 乘法也是定义明确的且满足替换公理. 用def 14 in From Natural to Rational 来证会很快.

Minus

def 11 (负运算): 令x为实数, 则. (注意到-1是有理数, 所有有理数的柯西序列是0接近的)

def 11 def 12 (减法): .

Inverse

为了避免除以0 (包括任何和等价的柯西序列以及包含0的柯西序列), 我们先定义一些别的:

def 13 (远离0): 称是远离0的, iff .

lemma 4: 设x是不为0的实数, 则存在某个远离0的柯西序列使得.

  • 证: 什么b证明. . This means that each real number has infinite correspond cauchy series. Thus if x is not 0, then is not close to , which means . This means .

    . (三角不等式把移到等式另一边).

    Besides, we could find another cauchy series . Q.E.D

    思路就是先假设x对应一个柯西序列, 然后该柯西序列不接近0即意味着对任意小正数,序列中总存在某项与0的距离大于该小正数, 最后证明存在其他项的绝对值全大于0的序列接近该序列.

lemma 5: 如果序列是远离0的柯西序列, 那么也是远离0的柯西序列.

  • 证: for the cauchy part: assume is cauchy away from 0, then we have: .

    for . To prove the result, we just need to find a number smaller than that makes . Or we could use another method: as is cauchy, then are larger than some numbers c. So we have: . This means if we want the result holds, we just need to make sure , for as it is far from 0. The final result is: .

     

    for the far from 0 part: suppose is not cauchy.

    Q.E.D

def 14: suppose , for is cauchy series far from 0. 那么我们定义.

Lemma 6: 倒数的定义是明确的.

  • 证明略.

Division

def 15 (除法): . 通过除法易证乘法有消去律.

Problem Set for Real Number

5.3.3: a, b为有理数, 证: a=b当且仅当L(a)=L(b).

  • 证: if:

    suppose .

    Q.E.D

5.3.4 - 5.3.5: easy.

 

上一篇
下一篇