Real Number
main def: 记运算
def 8: 两实数相等, 当且仅当其domain是等价的柯西序列.
-
该相等是定义明确的, 即:
, , . 首先等号是reflexive的(定义得), 其次, 该等号也是transitive和symmetric的. - 证: sym:
. - transitive:
. . Q.E.D
- 证: sym:
-
该等式满足替换公理.
- 证: 略. 用有理数序列的接近性性质来证会很快. def 14 in From Natural to Rational.
Add
def 9 (加法): 令
lemma 3: 如果x,y是实数, 那么x+y也是实数.
- 证:
. if x and y are all real numbers, then . We have that: . For are threshold for a and b under Q.E.D
Multiple
def 10 (乘法): 令
- 易证, 乘法也是定义明确的且满足替换公理. 用def 14 in From Natural to Rational 来证会很快.
Minus
def 11 (负运算): 令x为实数, 则
def 11
Inverse
为了避免除以0 (包括任何和
def 13 (远离0): 称
lemma 4: 设x是不为0的实数, 则存在某个远离0的柯西序列
-
证: 什么b证明.
. This means that each real number has infinite correspond cauchy series. Thus if x is not 0, then is not close to , which means . This means . . (三角不等式把 移到等式另一边). Besides, we could find another cauchy series
. Q.E.D 思路就是先假设x对应一个柯西序列, 然后该柯西序列不接近0即意味着对任意小正数,序列中总存在某项与0的距离大于该小正数, 最后证明存在其他项的绝对值全大于0的序列接近该序列.
lemma 5: 如果序列
-
证: for the cauchy part: assume
is cauchy away from 0, then we have: . for
. To prove the result, we just need to find a number smaller than that makes . Or we could use another method: as is cauchy, then are larger than some numbers c. So we have: . This means if we want the result holds, we just need to make sure , for as it is far from 0. The final result is: . for the far from 0 part: suppose
is not cauchy. Q.E.D
def 14: suppose
Lemma 6: 倒数的定义是明确的.
- 证明略.
Division
def 15 (除法):
Problem Set for Real Number
5.3.3: a, b为有理数, 证: a=b当且仅当L(a)=L(b).
-
证: if:
suppose
. Q.E.D
5.3.4 - 5.3.5: easy.